Газобетона куб: Газобетонные блоки — купить газоблоки по низкой цене за куб в Москве

Содержание

Стоимость газобетона за куб — считаем смету на дом

Из газобетонных блоков в последнее время возводится огромное количество объектов, потому что этот ячеистый материал действительно недорогой, но при этом отличается надежностью и устойчивостью к нагрузкам. Так как в газобетонных блоках имеются поры, этот фактор создает оптимальные теплозащитные свойства. Ведь стоимость газобетона за куб существенно ниже, чем многих других строительных материалов.

С газобетонными блоками удобно работать, потому что они обладают небольшим весом при приличном объеме. Именно большие габаритные размеры и малый вес создают оптимальные условия для быстрого возведения небольших и крупных объектов. Даже один человек способен в кратчайшие сроки выстроить компактный домик.

Габариты газобетонных блоков

Если пользоваться газобетоном, различные виды стен будут возведены в сжатые сроки при минимальных трудозатратах. Причем выбрать для строительства допускается газобетон в широком диапазоне толщины – от 50 до 400 миллиметров.

Длина газобетонного блока 600 мм, а высота 20 сантиметров, что значительно ускоряет процесс строительства. Есть такие конструкции газобетона, которые сцепляются друг с другом, обеспечивая прочность и монолитность сооружения. Какими габаритами способен обладать газобетонный блок:

  • 600х300х100,
  • 600х300х200,
  • 600х300х250,
  • 600х300х300,
  • 600х300х400,
  • 400х300х100,
  • 400х300х150,
  • 400х300х300.

Разные производители используют собственные габариты, под которые у них заложен технологический процесс.

Какую толщину стен выкладывают с помощью газобетона?

Когда рассчитывается стоимость газобетона за куб, нужно сначала получить общее количество материала, необходимое для строительства дома, согласно архитектурному проекту. Оптимальной толщиной несущей стены считается 60 сантиметров, то есть получается газобетон, теплоизоляционный материал и слой отделки.

Есть дома, в которых используется толщина на 20 сантиметров меньше, и этого также бывает достаточно для комфортного жилища, особенно если в вашем регионе мягкий климат.

Для межкомнатных простенков достаточным условием могут стать газобетонные блоки с габаритами 600х200х50. Для большего уровня звукопоглощения нужно использовать более толстые блоки газобетона.

Сколько стоит дом из газобетонных блоков

Чтобы с высокой точностью определить стоимость газобетона за куб, нужно сделать расчет площади строения и установить количество уровней. Надо посчитать количество газобетонных блоков, которые разместятся по высоте и по длине.

Если дом имеет один этаж и его габаритные размеры 12х12 м, то газобетон нужно рассчитать так, чтобы получилось в итоге 48 метров. Высота таких строений обычно составляет 3 м. Для строительства оптимальным решением будет газобетонный блок с габаритными размерами 600х200х400, а значит, необходимое количество для возведения дома – 1000 единиц газобетона с заданными габаритами.

Когда вы будете рассчитывать количество газобетона и стоимость всей конструкции, нужно вычесть проемы дверей и окон, так как на этих участках блоки не устанавливаются. Если под такой же дом покупать газобетонные блоки с другими габаритными размерами – 600х300х300, получится уменьшение количества почти в два раза.

Цена за газобетон устанавливается в расчете за один квадратный метр или за единицу, поэтому надо сразу уточнять, какой вариант предлагается конкретным продавцом данного материала. Если кубический метр газобетонных блоков стоит около ста долларов, на несущие стены потребуется почти 4500 долларов.

Эти значения могут меняться, в зависимости от габаритов газобетона и увеличения площади оконных проемов. Также окончательная стоимость зависит от производителя и продавца, устанавливающего цену.

Все равно нужно покупать газобетонные блоки, как и прочие строительные материалы, с некоторым запасом, так как возникают различные ситуации, в том числе и ошибки при расчетах.

Кроме того, при неосторожном обращении с газобетонными блоками, они иногда разрушаются, потому что их структура пористая, а это несколько их ослабляет. Большинство повреждений получается в процессе транспортировки, поэтому лучше производить ее самостоятельно или же доверять надежным грузоперевозчикам.

Чтобы выстроить внутренние перегородки, застройщикам потребуются газобетонные блоки с минимальной толщиной, которая составляет 15 сантиметров.

Кубический метр данного газобетона стоит на 10 долларов дешевле, чем толстые газобетонные блоки для основных стен. Но все равно потребуется солидное количество материала, потому что внутренних перегородок в доме бывает много.

Вес газобетона в 1м3 — объемный и удельный вес куба газобетона.

     Газобетон – строительный материал, изготовленный из цемента с добавлением песка и извести. При изготовлении используются только чистые экологические материалы, которые не содержат вредных веществ. Из-за особых технологий производства обладает отличительными характеристиками, такими как устойчивость к огню, ржавчине, гнили, морозу и воде.

Вес газобетона в зависимости от марки и размеры блоков
Марка газобетонаВес 1 м3 газобетона (кг)Популярные размеры блоков
D300300

200х200х600

250х200х600

280х200х600

300х200х600

360х200х600

400х200х600

500х200х600

75х200х600

100х200х600

120х200х600

150х200х600

D400400
D500500
D600600
D700700
D800800
D10001000
D11001100
D12001200

     При строительстве в первую очередь рассчитывается сколько весит газобетон (вес куба газобетона) так как на основании данной характеристики определяется спецификой его использования и применения. Существуют два понятия для расчета веса – объёмный вес газобетона и удельный вес газобетона. Объёмный – полный вес материала, удельный – вес без учета газовых вкраплений и воздуха.

     Смотри так же статьи : удельный вес керамзита и удельный вес газосиликатных блоков

     Для вычисления необходимо узнать сколько блоков находятся в кубе газобетона. Делается это очень легко исходя из математической формулы кубического метра. Кубический метр – это перемноженные высота, ширина и длина между собой. Давайте рассмотрим на примере газоблока с такими параметрами: высота – 250 мм, ширина – 400 мм, длина – 625 мм. Переведем эти параметры в метры, соответственно получаем 0,25; 0,4 и 0,625 м. Теперь для вычисления кубического метра одного блока перемножим параметры и получим 0,0625 м3. Зная этот параметр мы легко можем вычислить количество блоков, для этого разделим единицу на кубический метр одного блока. Сделав это получаем 16 – то есть в одном кубе именно такое количество блоков. 

 Определяем удельный вес газобетона по марке, плотности и размеру газоблока.

     Итак, для вычисления веса куба газобетона необходимо перемножить объём блока (который вычислялся выше), плотность блока на количество блоков. Плотность указывается маркой материала. Так, блок с маркой D500 имеет плотность в 500 кг/м3, а D900 соответственно 900 кг/м3.

     Возвращаясь к нашему примеру, вычислим вес одного блока, для примера возьмём плотность с маркой D500 – умножаем 500х0.0625 и получаем вес блока газобетона, который равен 31,25 кг. Теперь умножаем на количество блоков 31,25х16, получаем вес 1м3 газобетона 500 кг.

размеры и цены за штуку газоблоков

Газобетонные блоки – это современный, экологический чистый материал, выступающий альтернативой кирпичному и монолитному строительству. Модули отличаются идеальной геометрией, не подвержены гниению, горению, коррозии.

Сколько штук газобетонных блоков в кубе определяется посредством расчетов.

Что такое куб газобетона?

Для каждого мастера, который занимается частным домостроением, актуален вопрос технологических свойств, характеристик материала и его стоимость. Если выбор пал на газоблоки, размеры и цены за штуку взаимосвязаны между собой, что следует учитывать в предварительных расчетах. На практике удобно манипулировать единицей объема – 1 куб.

Куб газобетона – это условная единица объема материала, которая фигурирует в строительной среде. В стандартном математическом понимании он имеет три величины, равнозначные единице. Применительно к модулям внутренний размер сторон принимается за 1 м или так, чтобы произведение высоты, длины и ширины также равнялось единице. Зная линейные параметры, можно рассчитать сколько в кубе газоблоков.

Газобетон – это легкий ячеистый бетон. Чем плотнее материал, тем хуже его теплоизоляционные свойства

Плотность и вес

Вес материала имеет прямую зависимость от используемых в производстве заполнителей.

По удельному весу бетоны принято классифицировать указанным образом:

  • особо легкие. Кубический метр готового к строительству материала весит менее 500.0 кг. Это теплоизоляционные блоки с большим количеством ячеек 1.00-1.50 мм, общий объем которых достигает 85%;
  • легкие. В зависимости от плотности вес 1 м³ может составлять 500-1800 кг. Если рассматривать состав материала, самым тяжелым элементом выступает песок, его масса в общем соотношении достигает 600 кг. Именно в эту группу относится газобетон;
  • тяжелые бетоны. Вес 1 м³ достигает 1800-2500 кг, что обусловлено содержанием щебня и гравия, одних из самых массивных компонентов.

Как вычислить вес одного блока

Для вычислений достаточно умножить два значения:

  • объем одного модуля;
  • плотность материала – что можно узнать по маркировке.

Например, необходимо вычислить вес газоблока 600х300х200, марки Д500.

Расчет:

  • объем блока = 0.6х0.3х0.2 = 0.036;
  • плотность – 500 кг/м3 * 0.036 м3 = 18 кг.

Вес газоблока 600х300х250 вычисляется аналогичным образом.

Размер газоблока и цена

Зависимость габаритов, веса и стоимости стандартного материала самой ходовой марки Д600 рассмотрена в табличных данных.

12 кг17 кг23 кг27 кг33 кг39 кг48 кг
100х300х600 мм150х300х600200х300х600250х300х600300х300х600350х300х600400х300х600
2.4 т.р/м³2.6 т.р/м³2.9 т.р/м³2.9 т.р/м³3.0 т.р/м³3.1 т.р/м³3.3 т.р/м³

Габариты модулей, а соответственно их стоимость зависят от производителя, который выпускает товар. Например, размер газоблока «Инси» отличается по своим линейным параметрам

, стандартные стеновые модули по высоте, толщине и длине соответствуют 250х240х625 мм.

При расчете количества блоков не рекомендовано округлять значения, если речь идет о больших партиях материала

Сколько газоблоков в одном кубе

Чтобы узнать, сколько в кубе газоблока штук, следует провести два нехитрых действия:

  • измерение линейных параметров одного модуля. Вычисление его объема в м3;
  • единица делится на полученный показатель.

Если блок обладает размерами 300х250х625 мм, его объем вычисляется так: 0.625*0.250*0.3 = 0.046875 м3. Если единицу разделить на это значение, получится 21.33, что соответствует 21 модулю. Таким образом, 1 м³ материала конкретного размера содержит 21 блок. Рассчитать сколько газобетонных блоков в 1 кубе можно для материала любого размера.

Зная, сколько штук газоблоков в кубе, можно провести расчет общих финансовых издержек на строительство, размер которых зависит от этажности дома или габаритов иной постройки. Помимо количества, необходимо принимать во внимание и вес.

Стоимость

Кубометр бетона – это то значение, которое используется при расчете цены материала. Уровень издержек может колебаться и зависит от объема партии, которая подлежит поставке. Это обусловлено тем, что доставка рассчитывается отдельно и на фоне большого заказа, конечная стоимость уменьшается. Соответственно, при покупке малого объема цена будет максимальной и наоборот.

Например, зная общую стоимость партии газоблока, цена 20х30х60 см. за штуку вычисляется очень легко. Предположим, что необходимы модули указанного размера плотности, соответствующей марке Д500. Согласно указанной выше методике, вычисляем объем одного блока, он равен 0.036 м³. Количество штук в кубе – 27, то есть цена одного модуля будет равна 107.4 р.

Сколько газоблоков на поддоне

Поддон – это возвратная тара, которая изготавливается на основе древесины и чаще всего используется для доставки блоков к месту ведения работ.

Стандартный размер изделий 1000х1200, 800х1200 мм (европаллет). Мало знать, сколько газобетона в 1 кубе, следует уметь высчитывать объем материала на поддоне.

Помимо размеров, действуют общепринятые рекомендации по укладке газоблока при отгрузке. Если используется европаллет, стандартные модули выкладываются по две штуки в длину и четыре в ширину, на поддон укладывается пять рядов.

Для стандартного – это два модуля в длину, пять в ширину, по пять рядов. Если манипулировать самым распространенным газоблоком 200х300х600 мм, можно узнать количество штук, уложенных на одном паллете. Объем одного блока 0.036 м³.

Легче манипулировать показателями, переведенными в метры – 1.0, 0.8, 1.2 м. При ведении любых расчетов параметры должны соотноситься друг с другом

Для дальнейших расчетов умножается количество блоков в одном ряду на количество линий на поддоне:

  • стандарт – 5*5*2 = 50 шт*0.036 = 1.8 м³;
  • евро – 5*4*2 = 40 шт.*0.036 = 1.44 м³.

Таким образом, удалось узнать, сколько газоблоков в поддоне 200х300х600.

На практике недостаточно знать, сколько штук газоблоков в 1 кубе, мастер вынужден манипулировать более широкими параметрами. Когда используются нестандартные модули и такие же поддоны, потребуется другой расчет.

Пример

Мастеру необходимо вычислить неизвестное количество нестандартных модулей, уложенных на нестандартный паллет. Для этого следует измерить объем газоблока на поддоне.

Например, габариты пачки таковы:

  • ширина – 1000 мм;
  • длина – 800 мм;
  • высота – 1200 мм.

Последовательность действий:

  • вычисляем объем – 1.0*1.2*0.8 = 0.96 м³;
  • измеряем линейные параметры блока – 200х300х600;
  • объем 1 блока – 0.036 м³;
  • делим общий объем на объем модуля – 0.96/0.036 = 26.6 шт.

На поддоне находится 26 блоков. Округлять значения не всегда рационально. Производитель укладывает на паллет целые модули и не будет дорезать до объема 0.6 часть. Однако, при заказе крупных объемов материала, эти доли следует учитывать.

О размерах газоблоков и их свойствах, ценах рассказано в видео:

Представленные рекомендации помогут профессионально подойти к выбору и покупке материала. Зная, сколько газоблоков в 1 кубе, стоимость, количество на поддоне, можно контролировать корректную работу производителя и уровень затрат.

Книги по теме:

Расход клея на куб газоблока?

Расход клея на куб газоблока зависит от нескольких факторов. В этой статье мы разберемся:

Поехали!

Преимущества клея для газоблока над цементным раствором

Адгезия к основанию у клея для газоблока выше, чем у цементного раствора. Это связано с особенностями состава и физико-техническими характеристиками клея.

У клея для газобетона есть и другие преимущества:

    • Клей стоит в 2 раза дороже цементного раствора, однако его расход в 6 раз меньше. Итого получаем: 6/2 = 3. То есть, клей обойдется в 3 раза дешевле, чем цементный раствор.
    • За счет содержания в составе фракционного песка толщину шва из клея можно уменьшить до 2-3 мм.
    • Теплопроводность у клея такая же, как и у газоблока — от 0,08 до 0,12 Вт/м*С. Значит, зимой не возникнут “мостики холода”.
    • Клей может заполнять пространство более тщательно за счет боле высокой текучести.
    • На мешок клея в 25 кг расход воды всего около 5-5,5 л, поэтому влажность всей кладки не повышается.
    • Часть влаги удерживается внутри шва, за счет чего он не трескается при резких перепадах температуры.
    • Высокая влагоустойчивость.
    • Высокая пластичность.
    • Повышенная морозоустойчивость — не менее 50 циклов.
    • Клей схватывается быстрее цемента за счет специальных модификаторов.
  • При затвердевании не происходит усадки швов.
  • Небольшое количество отходов.

Состав клея

Выбирайте клей для газобетона в зависимости от времени года. Кстати, расход клея на куб газобетона в том числе зависит и от состава.

Если Вы строите дом зимой, используйте клей с противоморозными добавками на основе солей. Благодаря ним клей не замерзает даже при -10 градусах. Обратите внимание, что зимний клей нужно замешивать горячей, а не теплой водой. Температура воды должна быть на ниже +60 градусов, а лучше — еще выше. Выносите клей на улицу в специальной емкости, плотно закрытой сверху крышкой. Наносить клей нужно максимально быстро. На коррекцию положения блока у Вас будет всего 3 минуты, а не 10, как у летнего клея.

При использовании зимнего клея, тщательно следите за заполнением швов и их толщиной. Летом класть газоблок проще, потому что к клею нет дополнительных требований.

В состав клея входят:

    • Портландцемент самого высокого качества (обеспечивает прочность швов).
    • Мелкофракционный песок (обеспечивает тонкость шва).
  • Полимерные добавки (повышают пластичность, улучшают адгезию и заполнение всех неровностей).
  • Модификаторы (защищают швы от растрескивания при высокой температуры, удерживают влагу).

Сколько клея надо на куб газобетона

А теперь давайте научимся считать, сколько нужно клея на куб газоблока.

Расход клея на 1 куб газоблока составляет в среднем 1,5 — 1,6 кг сухой смеси. Точнее, эта цифра показывает, сколько клея уйдет на квадратный метр кладки при условии, что толщина шва составляет 1 мм. Но, как правило, минимальная толщина шва — 2-3 мм. При этом, нужно учесть, что поверхность должна быть идеально ровной, а это практически невозможно.

Итак, если толщина шва составляет 5 мм, получаем расход на куб: 1,5*5 = 7,5 кг. Но здесь опять-таки не учитывается, что часть клея впитается в толщу газоблока, а еще часть заполнит каверны и борозды в структуре. Как показывает практика, на куб газоблока потребуется в среднем один мешок (25 кг) сухого состава и еще около 5 л воды.

Чтобы понять, сколько нужно клея на 1 куб газобетона, учтите эти 7 факторов:

  • Наличие специального инструмента для газобетона (ковш, каретка).
  • Качество и тип клея (зимний или летний).
  • Состояние газоблока (насколько много у него впадинок или каверн).
  • Наличие или отсутствие крупных дефектов на поверхности.
  • Квалификация мастера.
  • Погода и относительная влажность воздуха.
  • Количество армирующих слоев.

Обязательно учтите эти моменты, прежде чем начать расчет расхода клея.

Чтобы в швах не образовались “мостики холода” Вам нужно купить клей с мелкозернистым (до 2 мм) песком. Он гарантирует однородную кладку тонким слоем.

Чем тоньше толщина шва, тем надежнее и долговечнее будет кладка из газобетона. Прочность зависит от толщины раствора. Как мы уже писали, клей обеспечивает более тонкий слой, чем цементный раствор. А это обеспечивает более высокую прочность шва на сжатие и изгиб.

Очень важно правильно приготовить состав, иначе все преимущества клея сойдут на нет. Засыпьте мешок сухого состава в ведро, залейте водой, и перемешайте низкооборотной дрелью с насадкой. Можно использовать строительный миксер. Перемешайте состав 5 минут, затем сделайте паузу на 2-3 минуты, чтобы дать возможность модификаторам раствориться. После этого еще раз перемешайте клей дрелью. Подробная инструкция по приготовлению всегда указана производителем на упаковке.

Теперь Вы знаете, сколько клея уходит на куб газобетона. Желаем Вам успешного строительства!

Онлайн калькулятор расход клея для газобетона

Для быстрого расчета мы предлагаем воспользоваться онлайн калькулятором — расход клея для газобетона . Переходите по ссылке и получите примерный расчет

.

Количество газобетона в одном кубе, на паддоне

Газобетон является одним из самых распространенных материалов для строительства. Он имеет небольшой вес и позволяет значительно снизить нагрузку на фундамент. При планировании постройки чего-либо, потребуется рассчитать количество газоблоков, которые будут необходимы для постройки. Для этого нужно знать сколько блоков содержится в 1 кубометре, и какие они имеют габариты. Самый ходовой размер блока равен 600х300х200 мм. Благодаря большей площади блоков, нежели у кирпича, с помощью газобетона можно строить все гораздо быстрее.

Сколько газоблоков в одном кубическом метре?

Чтобы наилучшим образом разобраться в способе подсчета материалов для проекта, давайте сразу рассмотрим пример. Итак, допустим у нас коробка 6 на 4 м, высотой 3 м. Мы планируем установить в ней 3 оконных проема 1,5 на 1,5 м и дверной проем 2 на 1 м. Каковы наши действия:

  • Сначала вычисляем объем стены из газоблоков. (6+4)*3=60 куб. м. На этом этапе окна и двери не учитываются.
  • Теперь рассчитываем объем проемов. 1,5*1,5*3+2=8,75.
  • Итоговый объем составляет 60-8,75=51,25 куб. м.

Теперь ясно как подсчитывается количество газоблоков. Необходимо выяснить сколько блоков в 1 м3. Для этого мы переводим 1 м3 в см. Получается 1000000 см3 (100х100х100). Если взять значение самого популярного размера блока 600х300х200 мм, мы получим объем, равный 36000 см3. Теперь для того чтобы узнать количество газоблоков в 1м3, нам нужно 1000000/36000=28 штук.

Чтобы узнать количеств блоков, которые понадобятся для всей конструкции нужно 28 умножить на 51. Получиться 1428 (1430) блоков.

В таблице ниже приведены значения для блоков разного размера и плотности.

Размеры газобетонного блока (ДВШ), ммПлотность, кг/м³Вес одного блока, кгОбъем одного блока, м³Количество блоков в поддоне, шт.Объем блоков в поддоне,м³Масса блоков в поддоне, кг
600×300×200500180,036321,152576
600×300×20060022692
600×300×20070025807
600×300×25050022,50,045241,08540
600×300×25060027648
600×300×25070032762

Сколько газоблоков вмещает поддон?

Стройматериалы поставляются в определенном количестве, упакованные в поддоны. Блоки нельзя приобрести поштучно. Сколько их будет в поддоне, определяется их размером. В зависимости от их габаритов, в поддоне может находиться от 40 до 180 блоков.

В таблице ниже приведено количество блоков, согласно их типу и размерам.

Перегородочные блоки

Размеры блоковКоличество блоков в поддоне
75х500х62580
100х500х62560
125х500х62548
150х500х62540
175х500х62532
100х250х625120
125х250х62596
150х250х62580
175х250х62564

Стеновые блоки

Размеры блоковКоличество блоков в поддоне
200х250х62556
250х250х62548
300х250х62540
375х250х62532
400х250х62532
500х250х62524

Сколько газоблоков можно перевезти за раз?

При перевозке материала, самым важным его параметром становится вес. В зависимости от веса нужно подбирать транспорт, на котором вы будете перевозить газобетон. Погрузку и разгрузку блоков следует производить при помощи манипулятора, не раскрывая упаковку и не нарушая целостность поддонов.

В таблице ниже приведены параметры веса для наиболее популярного типа блоков.

Размеры блоковВес одного блока, кгВес поддона с блоками, кг
600×300×20018576
600×300×20022692
600×300×20025807
600×300×25022,5540
600×300×25027648
600×300×25032762

Разный вес блоков обусловлен различной плотностью газобетона. Чем выше плотность блока, тем меньше в нем пор, содержащих воздух, и соответственно выше его вес.

Если для перевозки материала вы наймете обычный камазовский самосвал. В зависимости от габаритов и веса блоков, за один раз вы сможете перевезти примерно 8 — 15 поддонов газобетона.

Заключение

Расчетное количество газобетона для тех или иных работ, зависит от его плотности и размеров. Все конечно же, определяется тем, какой проект вы собираетесь реализовать. Таким образом на начальных этапах строительства, вы уже можете рассчитать какой объем и количество блоков вам потребуется, и за сколько рейсов вы сможете привезти материалы на площадку.

 

Газоблоки ВКБлок напрямую от завода КСМК служба доставки

Завод КСМК производит газобетон марки «ВКБлок» в следующих населенных пунктах: ст. Васюринская, г. Гулькевичи и пос. Кадамовский Ростовской обл. Автоклавный газоблок — очень прочный и экологичный строительный материал. Завод КСМК изготавливает конструкционно-теплоизоляционные газобетонные блоки с плотностями D400, D500, D600. Осуществляем доставку собственным автотранспортом в Краснодар, Сочи, Новороссийск и другие города Кубани. Мы предлагаем высококачественные газосиликатные блоки по цене завода — просто оформите онлайн заявку на сайте или позвоните нам.

Газобетон по оптовым ценам завода ВКБ-блок только от нашей службы доставки. Газобетонные блоки высокого качества и сопутствующие материалы для укладки газоблоков.

Наименование товара

Кол-во в 1 м3

Кол-во шт на поддоне

м3 на поддоне

Цена газобетона (в т.ч. НДС 20%)

Блок 625*250*80

80

120

1,5

3800 руб/м3

Блок 625*250*100

64

96

1,5

3800 руб/м3

Блок 625*250*120

54

80

1,5

3800 руб/м3

Блок 625*250*150

43

64

1,5

3800 руб/м3

Блок 625*250*200

32

48

1,5

3800 руб/м3

Блок 625*250*240

27

40

1,5

3800 руб/м3

Блок 625*250*250

28

40

1,56

3800 руб/м3

Блок 625*300*200

27

40

1,5

3800 руб/м3

Блок 625*250*300

21

32

1,5

3800 руб/м3

Блок 625*250*350

17

24

1,5

3800 руб/м3

Блок 625*250*400

16

24

1,5

3800 руб/м3

U — образные газосиликатные блоки

Наименование товара

Кол-во шт на поддоне

Цена, руб/шт

U-блок 500*250*200

48

150

U-блок 500*250*240

40

170

U-блок 500*250*250

40

170

U-блок 500*250*300

32

190

U-блок 500*250*400

24

250

U-блок 625*250*200

48

210

U-блок 625*250*240

40

230

U-блок 625*250*250

40

230

U-блок 625*250*300

32

270

U-блок 625*250*400

24

330

Инструмент для работ с газобетоном

№ п/п

Наименование

Фото

Цена, руб

1

Кельма 100 мм

380

2

Кельма 150 мм

455

3

Кельма 200 мм

510

4

Кельма 250 мм

580

5

Кельма 300 мм

640

6

Кельма 400 мм

710

7

Каретка 200 мм

1340

8

Каретка 250 мм

1400

9

Каретка 300 мм

1510

10

Каретка 400 мм

1630

11

Штроборез

455

12

Угольник

625

13

Ножовка

1950

14

Рубанок

1300

Газобетонные блоки автоклавного твердения завода-изготовителя КСМК относится к разновидности ячеистых бетонов. К сожалению, некоторые разновидности ячеистобетонных изделий определенно нельзя назвать надежными строительными материалами. Так, при равных плотностях, прочностные характеристики автоклавного газоблока (который в процессе автоклавирования прошел закалку в среде насыщенного пара при высоких давлении и температуре) на порядок выше, чем у неавтоклавного. Естественно, материал небольшой прочности дает сильную усадку, что приводит к появлению в стенах трещин. Зная о таком недостатке отдельных видов ячеистых бетонов, появляется недоверие к другим разновидностям материала. Наша компания предлагает качественный материал из автоклавного газобетона, изготовленный на современном немецком оборудовании, который прошел проверку временем (более подробно в видео на нашем сайте).

Технология производства

Газоблок — это смесь песка, воды, цемента и извести, вспученная водородосодержащими пузырьками, которые образуются в ходе химической реакции щелочной части раствора и небольшого количества алюминиевой пудры.

Пройдя процесс вспучивания, слегка схватившийся массив разрезают и помещают на 10-14 часов в автоклав. Там, в среде насыщенного пара при давлении в 10-15 бар и температуре 170-190 °С сырец подсушивается и набирает проектную прочность. Благодаря специальной рецептуре и автоклавированию ВКБ блоки это очень прочные, негорючие , морозостойкие, долговечные изделия.

Автоклавный газобетон производится на автоматизированном немецком оборудовании. Жесткий контроль за всем технологическим процессом позволяет производить качественный продукт с высокоточной геометрией. Технические характеристики газобетона КСМК соответствуют российским стандартам ГОСТ 31360-2007, ГОСТ 5742-76, ГОСТ 31359-2007 и зарубежному ЕН 771-4:2003

Нашим покупателям мы предлагаем газоблоки со следующими характеристиками:

Тип блокаСтеновой теплоизоляционныйСтеновые конструкционно-теплоизоляционные
Плотность, кг/м3D400D500D600
Прочность на сжатие, кПа/см2В 1.5/2В 2.5/3.5В 3.5
Теплопроводность, Вт/(м•°С)0,0960,120,14
Паропроницаемость, мг/(м•ч•Па)µ — 0,23µ — 0,2µ — 0,16
Морозостойкость50 циклов50 циклов50 циклов

Заметим, что автоклавный газосиликат выгодно отличается не только в среде ячеистых бетонов. Ниже рассмотрены физико-химические качества, делающие блоки КСМК конкурентоспособными другим строительным материалам.

В огне не горит, в воде не тонет – экологично и практично

Согласно ГОСТ 30244-94 и добровольной сертификации СНиП 21-01-97 газобетонные блоки КСМК относятся к классу негорючих материалов (НГ). Конструкции из газоблоков имеют I степень огнестойкости и во время пожара не выделяют токсичных газов. Испытания по ГОСТ 30247.0-94 показали, что предел огнестойкости несущих стен из неармированных стеновых блоков КСМК составляет не менее REI 180 при равномерно- распределенной нагрузке 18 т/пог.м ( без учета собственного веса). То есть за 180 минут (3 часа) испытаний несущая стена при непрерывном одностороннем воздействии пламени не потеряла своей теплоизолирующей способности (I), целостности (Е) и несущей способности (R).

Газоблоки КСМК обладают высокой пористостью. Тем не менее, они отличаются хорошей гигроскопичностью из-за сферичности пор, не пропускающих влагу внутрь материала. Поэтому автоклавный газобетон не «впитывает» воду как кирпич и быстро высыхает после косого дождя в отличие от древесины. Из капсулярности газосиликата вытекает еще одно свойство — морозостойкость. Т.к. замерзающая вода имеет место для расширения в пустотах, то в материале не возникает угрозы разрыва.

Автоклавные газобетонные блоки, структурно напоминают природную пемзу и также обладают высокими теплоизоляционными и теплоаккумулирующими свойствами.

В гистограмме представлены характеристики аккумуляции тепла и остывания стен из различных строительных материалов одинаковой толщины. При сравнении показателей по аккумуляции тепла в образцах и их остыванию у газобетона D500 наблюдается высокий уровень тепловой инерции и сопоставимая с деревом хорошая теплоизоляция.

Далее предоставлена таблица, отображающая требуемую государственными нормами по тепловой защите толщину однородных стен из наиболее распространенных конструкционно-теплоизоляционных и конструкционных строительных материалов.

Из этой таблицы можно сделать вывод, что использование в строительстве автоклавных газоблоков позволяет возводить стены с наименьшей толщиной (без дополнительного утепления), а значит максимально эффективно использовать площадь дома под жилое пространство.

Уникальные характеристики и сравнение с другими строительными материалами

Газобетонный блок КСМК по СанПиН 2.6.1.2523 – 09 «Нормы радиационной безопасности (НРБ 99-2009)» относится к 1 классу.

Данный материал не содержит токсичных и органических соединений, и в период эксплуатации не выделяет вредных газов.

Стены из газобетонных блоков по праву называют «дышащими». И неспроста, ведь они не препятствуют выходу через стену газов CO, CO2, Ch5. Из гистограммы видно, что паропроницаемость газоблока почти в 4 раза выше, чем древесины.

Ниже приведена таблица характеристик некоторых материалов. Помимо выше перечисленных преимуществ газосиликатных блоков в ней наглядно показано, что трудоемкость на выполнение строительных работ сравнительно небольшая. Стены из таких блоков легче, чем из других материалов, они податливы в обработке, требуют меньшего расхода раствора.

ХарактеристикаЕд. измеренияСиликатный кирпичПолнотелый глиняный кирпичКерамзитобетонПенобетонДеревоГазобетон (D 500)
Плотностькг/м31800-19001400-1800800-1200800500500
Коэффициент теплопроводностиВт/(м•°С)0,7-1,20,56-0,810,23-0,40,250,09-0,180,12-0,14
Коэффициент паропроницаемостимг/(м•ч•Па)0,110,110,081,140,06 — 0,320,20
МорозостойкостьЦиклF-35F-32 F-25F-15 F-35F-50F-50
Толщина стены при одинаковой тепловодностим110,60,40,30,3
Трудозатраты необходимые для укладки 1 м2 стенычас220,2-10,150,50,15
Расход растворам30,240,240,11-0,20,11-0,150,11

Теплопроводность и паропроницаемость здесь характеризуются коэффициентами теплопроводности(λ) и паропроницаемости(µ) соответственно.

По долговечности здания из газобетона не уступают зданиям из бетона и кирпича.

По вопросам приобретения продукции, вы можете обращаться в наш отдел продаж завода ВКБлок по телефону: +7 (861) 246-24-66.

Как определить расход клея на кладку из газобетона?

Газобетон, как строительный материал для стен, становится все популярнее, все больше и больше загородных домов возводится из него. Среди преимуществ газобетонных блоков не только дешевизна, лёгкий вес и хорошая теплоизоляция: кладка стен из газоблока осуществляется с минимальными зазорами между элементами, составляющими всего пару миллиметров, а это значит, что потери тепла через «мостики холода» тоже сводятся почти к нулю.

Именно в силу данного обстоятельства для газобетонной кладки используют не традиционный строительный раствор из песка и цемента, каким кладут кирпичные стены, а специально предназначенные, выпускаемые фабричным способом строительные смеси – клей для газобетона. Именно он позволяет подгонять блоки максимально плотно друг к другу, сокращая расстояние до миллиметров, тогда как требования строительных нормативов, предусматривают толщину слоя из такого раствора 1,2 см и более.

Несмотря на очевидные преимущества кладки газобетона на специальный клей, некоторые «умельцы» до сих пор пропагандируют использование цементно-песчаного раствора, якобы, из-за его экономичности. Однако расход клея в пересчёте на объём используемого газоблока не подтверждает факт экономии. Стоимость его в закупке несколько выше, по сравнению с песком и цементом, но и расход в разы меньше.

Расход клея для кладки газобетона зависит от ряда условий:

  • Ровная поверхность газоблока. И чем ровнее грани, тем экономичнее расход;
  • Назначение сооружения и требования к кладке со стороны строительных норм;
  • Частота перемешивания. Расход клея можно минимизировать, если разведенный состав подвергать постоянному перемешиванию;
  • Конкретный состав смеси. При увеличенном количестве песка среди компонентов клея, повышается расход;
  • Сезон и погода. Так, в зимние марки клея добавляются специальные пластификаторы, которые позволяют делать еще более тонкие швы, чем летом. Но и расходовать подготовленную массу необходимо быстрее – задержка свыше 30 минут на холоде чревата выброшенным составом;
  • Опыт строителя. Какое количество смеси подготовить, чтобы успеть истратить весь разведенный клей до того, как он утратить нужные свойства, как подогнать блоки максимально плотно, как заделать имеющие неровности или сколы блоков с минимальными затратами клея – эти знания пригодятся, чтобы строить дешевле.

Как определить, сколько купить клея для газобетона?

Универсального числа для расчёта точного количества клея не существует. Однако производители сухих смесей для кладки газобетонных блоков обычно указывают приблизительный расход подготовленного состава на упаковке. Средние значения – это примерно 1,5 кг сухого клея на 1 кв.м. стены из газоблоков, то есть на 1м3 газобетона потребуется 25 кг клея (как раз объем стандартной упаковки).

Тонкости:

  • Если Вы решили строить дешевле и закупили некондиционный газобетон, умножьте предполагаемый расход на коэффициент 1,3-1,5 – «излишки» пойдут на выравнивание дефектов блоков;
  • Проведите пробную кладку из нескольких блоков, чтобы определить оптимальную толщину шва и, соответственно, расход клея конкретно в Вашем случае;
  • Наличие армопояса в кладке повышает расход клея;
  • Купите 1 мешок клея «про запас».

Каталог товаров:

(PDF) Механические свойства легкого газобетона с различным содержанием алюминиевой пудры

5. Изломы поверхностей образцов АК с порошком Al от 0,5 до 1%

выявили наличие пор неоднородной формы. которые были больше, чем

, наблюдаемых для АУ с низким содержанием 0,25%.

Авторы благодарны Министерству высшего образования и науки Ирака за финансовую поддержку

исследований (MOHESR), моему коллеге господину.Мохаммед Аль-Тай и техническая поддержка г-на Джона

Мейсон в школе MACE Манчестерского университета.

Список литературы

1. Эйдан А. и др. Приготовление и свойства пористого газобетона. Научные труды

Университета Русе, 48, 9 (2009)

2. А. Дж. Хамад, Материалы, производство, свойства и применение легкого пористого бетона

: Обзор. Международный журнал материаловедения и инженерии, 2, 2

(2004)

3.Н. Нараянан и К. Рамамурти, Структура и свойства пенобетона: обзор

, Цемент и бетонные композиты, 22, 5 (2000)

4. А. Кейвани1, Тепловые характеристики и огнестойкость автоклавного пенобетона

условия подверженной влажности. International Journal of Research in Engineering and

Technology, 3, 3 (2014)

5. D. H. Lim and B.H. О, экспериментальное и теоретическое исследование сдвига балок, армированных фибробетоном из стали

.Engineering Structures, 21, 10 (1999)

6. О. А. Дюзгюн, Р. Гюль, А. К. Айдын, Влияние стальной фибры на механические свойства

бетона из легкого природного заполнителя. Materials Letters, 59, 27 (2005)

7. А. М. Невилл, Дж. Дж. Брукс, Технология бетона. 2-е изд. Харлоу: Longman

Scientific & Technical (2010)

8. П. О. Гульельми и др., Пористость и механическая прочность автоклавного глиняного бетона

Ячеистый бетон.Достижения в области гражданского строительства (2010)

9. И. С. Радж и Э. Джон, Исследование свойств воздухововлекающего бетона для кладки

блоков. Международный журнал научной инженерии и технологий. 3, 11 (2014)

10. А.А. Алиабдо, А.-Э.М. Абд-Эльмоаты, Х. Х. Хассан, Использование глиняного щебня

кирпича в производстве ячеистого бетона. Александрийский инженерный журнал. 53, 1 (2014)

11. Р. !. t дозировки цемента, осадки и пемзовый заполнитель

Соотношения

по прочности на сжатие и плотности бетона.Цемент и бетон

Исследования. 33, 8 (2003)

12. А. Ахмед, А. Фрид, Прочность на изгиб блочной конструкции низкой плотности. Строительство и

Строительные материалы. 35, стр. 516-520 (2012)

13. Пракаш Т. и др., Свойства пенобетонных блоков International

Журнал научных и инженерных исследований. 4, 1 (2013)

14. К. Х. Янг и К. Х. Ли, Испытания высокоэффективного пенобетона с более низкой плотностью

.Строительные и строительные материалы. 74, стр. 109-117 (2015)

15. BS EN 1881-116, Испытания бетона. Метод определения прочности на сжатие

кубиков бетона (1983)

16. BS EN 1351, Определение прочности на изгиб автоклавного газобетона (1997)

17. BS EN 1352, Определение статического модуля упругости при сжатии

автоклавный газобетон или бетон на легких заполнителях с открытой структурой

(1997)

18.BS EN 992, Определение плотности в сухом состоянии легкого заполнителя бетона с открытой структурой

(1996)

19. C. Холл, Водный транспорт в кирпиче, камне и бетоне, изд. W.D. Hoff. Лондон: E. & F.

N. Spon (2000)

DOI: 10.1051 /

, 02010 (2017) 712 00

1

MATEC Web of Conferences

20

matecconf / 201

ASCMCES -17

2010

6

Грубые автоклавные блоки из пенобетона AAC, для перегородок, плотность кг на куб M: 650-800, 35 рупий.99 / штука

Грубые блоки из автоклавного пенобетона AAC, для перегородок, плотность кг на куб M: 650-800, 35,99 рупий / кусок | ID: 22448203412

Спецификация продукта

Форма Прямоугольная
Размер Все в наличии
Марка Блок
Материал Мембранный бетон Пертобетон Пертобетон Автоклавирование Ae 650-800
Толщина 100 мм
Применение / применение Перегородки
Тип продукта Блоки
Конструкция Сжатое Жесткое сжатие
Цвет Серый
В продаже Только новинка
Страна происхождения Сделано в Индии

Описание продукта

Мы предлагаем обширную серию 625 * 200 * 100-250 мм AAC Block .Эти продукты широко используются на рынке для различных целей.

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 2001

Юридический статус Фирмы Физическое лицо — Собственник

Характер бизнеса Оптовик

Количество сотрудников До 10 человек

Годовой оборот10–25 крор

Участник IndiaMART с февраля 2016 г.

GST07AFSPA5707R1ZU

Видео компании

Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

Автоклавный пенобетон, 2-дюймовый блок AAC, плотность, кг на куб M: 14 кг на куб M, размер: 9 x 3 x 2 дюйма, 2950 рупий / кубический метр

Спецификация продукта

Бетон
Марка Raystal
Размер 9 x 3 x 2 дюйма
Плотность кг на куб M 14 кг на куб M
Применение / Применение Боковые стены
Форма Прямоугольная
Страна происхождения Сделано в Индии
Минимальное количество заказа

Описание продукта

Автоклавный газобетон (AAC) — это легкий сборный пенобетон из сборного материала , который подходит для производства бетонных блоков, таких как блоки.Состоящие из кварцевого песка, кальцинированного гипса, извести, цемента, воды и алюминиевого порошка, продукты AAC отверждаются под действием тепла и давления в автоклаве.

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом


О компании

Год основания 2017

Юридический статус компании с ограниченной ответственностью (Ltd./Pvt.Ltd.)

Характер бизнеса Производитель

Количество сотрудников от 26 до 50 человек

Годовой оборот 10–25 крор

Участник IndiaMART с марта 2015 г.

GST27AAICR9158D1Z2

Основанная в 2017 году, мы, « Raystal Infra Private Limited », является производителем и продавцом широкого спектра блоков AAC, керамической плитки, готовой штукатурки, строительного раствора для стыковки блоков, шпатлевки и гипсового порошка .Мы производим эти продукты, используя сырье высшего сорта, которое закупается у подлинных продавцов рынка. Мы предлагаем эти продукты по разумным ценам и доставляем их в обещанные сроки.
Мы наняли умную команду сотрудников, которая всегда в курсе передовых технологий производства и дизайна. Кроме того, у нас также есть блок контроля качества, в котором мы проверяем весь наш ассортимент по определенным параметрам, таким как дизайн, качество и отделка. Все подразделения и оснащены всеми необходимыми инструментами, машинами и технологиями для производства высококачественной продукции
Под ценным руководством нашего наставника Mr.Йогеш Удгиркар, , мы быстро растем на рынке. Он проработал долгие годы в отрасли, имея богатый производственный опыт, позволяющий нам понимать разнообразные требования наших клиентов.

Видео компании

Свойства и внутреннее отверждение бетона, содержащего переработанный автоклавный легкий бетон в виде заполнителя

Глобальное потепление является жизненно важной проблемой для всех секторов во всем мире, включая строительную промышленность.Для реализации концепции зеленых технологий было предпринято множество попыток разработать продукты с низким уровнем выбросов углерода. В строительном секторе автоклавный газобетон (AAC) стал более популярным и производился для удовлетворения строительного спроса. Однако ошибки производственного процесса составляли от 3 до 5% производства AAC. Разработка отходов AAC в виде легкого заполнителя в бетоне — один из потенциальных подходов, который подробно изучался в этой статье.Результаты показали, что прочность на сжатие бетона AAC-LWA снижалась с увеличением объема и крупности. Оптимальная пропорция смеси была размером от 1/2 » до 3/8 » агрегата AAC с 20-40% замещением агрегата нормального веса. Также наблюдалось внутреннее отверждение с помощью AAC-LWA, и было обнаружено, что внутри образцов достаточно воды, что привело к достижению более высокой прочности на сжатие. Основная цель этого исследования заключается не только в утилизации нежелательных промышленных отходов (переработка отходов), но и в накоплении новых знаний об использовании AAC-LWA в качестве внутреннего отвердителя, а также в производстве изделий из легкого бетона с добавленной стоимостью.

1. Введение

Чтобы реализовать концепцию технологии зеленого строительства, было предпринято множество попыток разработать продукты или методы с низким уровнем выбросов углерода. Подход, заключающийся в преобразовании отходов любых промышленных секторов в новое сырье для других отраслей, получил гораздо большее внимание как общество безотходного производства. Обычно самый простой способ удаления промышленных отходов — это использовать их в качестве заменителя цемента или бетона, например, в качестве добавок к цементу или заполнителей бетона.В Таиланде, хотя обычная каменная стена изготавливается из местного глиняного кирпича, с запуском блоков из легкого автоклавного пенобетона (AAC) они становятся новым выбором для инженеров и строителей, поэтому становятся все более популярными в строительной отрасли. Однако сообщалось, что лом и отходы от общего производства блоков AAC составляли примерно от 3 до 5% (58 тонн в месяц), в результате чего огромное количество остатков AAC направлялось непосредственно на площадку, засыпанную землей (Рисунок 1).Разработка отходов AAC в качестве легкого заполнителя при производстве бетона является одним из потенциальных подходов, который не только полезен для использования промышленных побочных продуктов и снижения энергопотребления, но также полезен для повышения прочности за счет внутреннего отверждения и уменьшения конечного бетона. вес [1, 2].


Внешнее отверждение — это распространенный метод достижения достаточной гидратации портландцемента, который может быть достигнут за счет предотвращения потери влаги на поверхностях, обертывания влажными покрытиями или даже погружения образцов бетона в водяную баню.Однако в некоторых случаях эффективность внешнего отверждения может быть ограничена из-за неудовлетворительного проникновения воды для отверждения в образцы из-за физического барьера или геометрии бетонных компонентов [3]. Внутреннее отверждение — это альтернативный подход, предусматривающий введение внутреннего резервуара для воды для отверждения внутри бетонных смесей. Уже доказано, что внутреннее отверждение может значительно повысить прочность и уменьшить автогенную усадку готовых бетонных изделий [4, 5]. В качестве заполнителя для внутреннего отверждения можно использовать любой пористый легкий материал (например,g., вермикулит, перлит, пемза, шлак, керамзит, керамзит и отходы дробленого AAC) [6, 7], поскольку они могут поглощать воду во время приготовления и смешивания, а затем постепенно высвобождать оставшуюся воду внутри смесей во время процесса твердения [ 8]. Более того, шероховатая поверхность и крупнопористая структура этих легких заполнителей также могут способствовать взаимному блокированию переходных зон между цементным тестом и заполнителем (взаимосвязанные поверхности), что приводит к улучшению механических свойств [9].

Основная цель данной статьи — использовать имеющиеся местные отходы AAC в качестве легкого заполнителя в производстве бетона, что может позволить преобразовать промышленные отходы в продукты с добавленной стоимостью. Легкость и равномерно распределенная пористость являются ключевыми характеристиками AAC, которые могут служить в качестве материала для внутреннего отверждения для обеспечения достаточных условий отверждения для бетонной конструкции. Были исследованы подходящие размеры и оптимальный процент замены заполнителя AAC, а также окончательные свойства свежего и затвердевшего бетона во время подхода к внутреннему отверждению.

2. Материалы и препараты

Портландцемент был товарной марки I с удельным весом 3,15. Местный речной песок использовался в качестве мелкого заполнителя с удельным весом и модулем дисперсности 2,39 и 2,90 соответственно. Влажность песка составляла 0,80% при насыпной плотности 1,645 кг / м 3 . Крупный заполнитель представлял собой гравий товарного сорта от местных поставщиков. Удельный вес, влажность и насыпная плотность составляли 2,70, 0,50% и 1540 кг / м 3 соответственно.Отходы AAC были собраны в компании PCC Autoclave Concrete Company Limited, Чиангмай, Таиланд. Его удельный вес составлял 1,06 при массе сухой единицы 360 кг / м 3 . ААС в полученном виде со значением водопоглощения от 28 до 30% измельчали ​​до меньшего размера с помощью стандартной щековой дробилки (рис. 2).


Градацию крупных агрегатов AAC затем анализировали с помощью стандартного ситового анализа США. Эффективный крупный размер, использованный в этом исследовании, составлял от 3/8 » (9,5 мм) до 3/4 » (19.0 мм.), Что составляет около 50% от общего количества заполнителей AAC и имеет средний модуль дисперсности 7,20 (Таблица 1). Следует отметить, что большинство эффективных значений размера AAC-LWA составляли 3/4 ′ ′, 1/2 ′ ′ и 3/8 ′ ′, а классы размеров (как указано с S1 по S4) замены грубых заполнителей были поэтому используется в эксперименте. Этикетки и описания бетонных смесей, включая классы крупности AAC-LWA, показаны в Таблице 2.

Кастрюля

Размер сита (мм.) Остаток в процентах на сите

2 ′ ′ (50,80) 1,31
1 ′ ′ (25,40) 9,18 3/4 ) 18,22
1/2 ′ ′ (12,70) 20,12
3/8 ′ ′ (9,53) 11,35
# 4 (4,75) 11,14 11,14 28,67


Наклейка агрегат Нормальный вес
агрегат Нормальный вес LWA Легкий заполнитель
LWA20 Бетон с заменой 20% легкого заполнителя
LWA40 Бетон с 40 % замена легкого заполнителя
LWA60 Бетон с заменой 60% легкого заполнителя
S1 Легкий заполнитель с размером класса 1 ′ ′ — 3/4 ′ ′
S2 Легкий заполнитель с легким заполнителем размер класса 3/4 ′ ′ — 1/2 ′ ′
S3 Легкий агрегат с классом 1/2 ′ ′ — 3/8 ′ ′
S4 Легкий агрегат смешанного класса размер от 1 ′ ′ — 3/4 ′ ′ до 3/4 ′ ′ — 1/2 ′ ′ до 1/2 ′ ′ — 3/8 ′ ′ на 20:40: 40

Распределение крупнозернистого заполнителя, товарного сорта и размера по сравнению с ASTM C33 с номером 67.На рисунке 3 показано распределение по размерам грубых заполнителей нормальной массы (NWCA), используемых в смеси NC. Было обнаружено, что гранулометрический состав заполнителя нормального веса находится между 1/2 » и 3/8 » и в основном соответствует верхней и нижней границам стандарта ASTM C33 номер 67 по размеру. Кроме того, в зависимости от размера класса S1 – S4, распределение по размеру замены AAC-LWA агрегатом нормального веса на 20, 40 и 60% (LWA20, LWA40 и LWA60) также наносится на график относительно верхней и нижней границ ASTM C33 номер 67 критериев.


Поскольку определенные размеры класса AAC-LWA (S1 – S4) были заменены на обычную градацию гравия товарного сорта, графики распределения по размерам начали сдвигаться к верхнему пределу границ ASTM C33 (Рисунок 4). Можно видеть, что связка всех размеров классов LWA20 близко выровнена внутри верхней границы (рис. 4 (а)). Более того, линии распределения по размерам были явно смещены вправо за верхний предел, когда количество замены AAC-LWA увеличилось с LWA40 (Рисунок 4 (b)) до LWA60 (Рисунок 4 (c)) во всех размерах классов.Таким образом, присутствие заполнителей AAC-LWA не только влияет на общую градацию крупного заполнителя бетона, но также может влиять на механические свойства конечного результата затвердевшего бетона.

3. Детали эксперимента
3.1. Обозначения смесей

Обозначение смесей было выполнено в соответствии со стандартом ACI 211.1 для бетонных смесей. В контролируемую смесь (нормальный бетон, NC) с соотношением воды и цемента (в / ц) 0,35 были добавлены заполнители нормального веса с наибольшим размером частиц 3/4 ».Требуемая просадка бетона составляла от 5 до 10 см. Кроме того, в смесях с отходами AAC в виде легких заполнителей (AAC-LWA) объем заполнителей нормальной массы был заменен на насыщенный поверхностно-сухой (SSD) AAC-LWA, а именно 20, 40 и 60%, соответственно. Следует отметить, что общий вес замены AAC-LWA был рассчитан из того же объема нормального заполнителя в кубическом метре бетона. Например, замена 20% AAC-LWA (LWA20), поскольку насыпная плотность заполнителей нормального веса и AAC-LWA составляла 1540 и 360 кг / м 3 , соответственно, 188 кг заполнителей нормального веса были заменены 46 кг AAC. -LWA.Все бетонные смеси перемешивали в смесителе с наклонным барабаном до достижения подходящих условий. Затем свежий бетон был подвергнут испытаниям на удобоукладываемость и помещен в подготовленные формы. Спустя 24 часа все образцы бетона были извлечены из формы и выдержаны в специально разработанных условиях отверждения, отверждения на воздухе и воде. Пропорции смеси представлены в таблице 3.

S1 90 123 S4 9012 2

Смесь Замена ACC-LWA (%) Размер класса Портландцемент Водяной заполнитель Агрегат ACC

NC 571 200 588 938 588 938
571 200 588 750 46
20 S2 571 200 588 75012 57 200 588 750 46
20 571 200 588 750 46

LWA40 40 S1
40 S2 571 200 588 563 93
40 S3 571 200 568 S4 571 200 588 563 93

LWA60 60 S1
60 S2 571 200 588 375 139
60 S3 571 200 588 375 139
60 S4 571 200 588 200 588
3.2. Аналитические методы

Свойства свежего бетона определялись с помощью теста на осадку и текучести. Испытание на оседание бетона проводилось с использованием ASTM C143. Величина просадки 10 см. был установлен в соответствии с ACI 213R-87, рекомендованным для строительства перекрытий, колонн и несущих стеновых конструкций. Пропускную способность бетона измеряли с помощью таблицы расхода вместе со стандартом ASTM C124. Свойства затвердевшего бетона определялись как стандартными, так и минутными испытаниями на прочность на сжатие.После извлечения из формы (в течение следующих 24 часов) все образцы были отверждены в воде или на воздухе до достижения их испытательного возраста в 1, 3, 7 и 28 дней. Вес и размер всех образцов были измерены перед дальнейшей обработкой для расчета кажущейся плотности. Стандартное испытание на прочность на сжатие всех цилиндрических образцов (диаметром 15 см и высотой 30 см) было проведено с использованием универсальной испытательной машины (UTM) в соответствии с ASTM C39. С помощью оптического микроскопа наблюдали межфазную переходную зону (ITZ) AAC-LWA и цементного теста.

Прочность на сжатие в минуту (кубический образец 3 × 3 × 3 мм) была введена и проведена в этом испытании для определения влияния AAC-LWA на внутреннее отверждение [10]. Для подготовки образцов для испытаний на прочность размером 150 × 150 × 150 мм. бетонный куб был перемешан и выдержан в заданных условиях. Три места бетонного куба (внешняя зона и внутренняя зона) были разрезаны на 15 × 15 × 150 мм. призмы (рисунок 5). Затем каждую призму разрезали на слои толщиной 3 мм с размерной длиной 3 × 15 × 15 мм., а именно L1, L2 и L3. Следует отметить, что L1 был слоем сразу после AAC-LWA, а L2 и L3 были дополнительно выровнены (рисунок 6). Эти слои (L1, L2 и L3) были окончательно разрезаны на 3 × 3 × 3 мм. кубиков (рис. 7), а затем протестировали с помощью стандартного контрольного кольца, прикрепленного к UTM.




4. Результаты и обсуждение
4.1. Тест на просадку

Результаты испытания на просадку бетона проиллюстрированы на Рисунке 8. Классы размеров AAC-LWA, как указано S1, S2, S3 и S4 (см. Таблицу 2), не имели существенных различий в испытании.Осадка контролируемого бетона (NC) составляла 5,80 см, в то время как значения осадки бетона AAC-LWA имели тенденцию к увеличению с более высоким процентом замены заполнителя AAC, например, примерно с 7,50 см. (LWA20) примерно до 10,60 см. (LWA60). Фактически, острая форма и шероховатая поверхность AAC-LWA могут уменьшить величину осадки из-за блокировки и внутреннего трения между материалами [11]. Однако в этом случае величина осадки в основном определялась водоудерживающей способностью, избытком воды на поверхности частиц ААС.Соотношение воды и цемента было увеличено, что привело к увеличению значения осадки бетона. О аналогичном результате также сообщили Сингх и Сиддик (2016) о том, что материалы с высокой абсорбцией (например, зола из угольного остатка) могут действовать как резервуар для воды и могут повышать конечное соотношение воды к бетону в бетонных смесях [12].


4.2. Flow Test

Не было значительной разницы в текучести между контролируемой смесью (NC) и смесями AAC-LWA. Средний расход бетона AAC-LWA, казалось, немного уменьшился, когда увеличилась замена заполнителя AAC.Среднее значение расхода NC составляло 53,3%, в то время как средние значения расхода смесей LWA20, LWA40 и LWA60 составляли 55%, 56% и 53% соответственно (Рисунок 9). Однако, поскольку значения текучести находились в диапазоне от 50 до 100%, бетонные смеси AAC-LWA были классифицированы как смеси средней консистенции, которые можно было легко поместить и уплотнить в формы во время процесса литья.


4.3. Кажущаяся плотность бетонных смесей

Как показано на Рисунке 10, кажущаяся плотность контролируемой смеси (NC) составляла около 2380 кг / м 3 в возрасте 28 дней.Кроме того, общая кажущаяся плотность бетона LWA20 была немного уменьшена примерно на 3-4% до примерно 2,290-2310 кг / м 3 по сравнению со смесью NC. Для смесей LWA40 и LWA60 кажущаяся плотность непрерывно уменьшалась на 8-9% (2160-2180 кг / м 3 ) и 13-15% (2030-2070 кг / м 3 ), соответственно. Аналогичные результаты были получены Hossain et al. (2011) и Topçu и Işikdaǧ (2008), которые заменили заполнители нормального веса пемзой и перлитом в качестве крупных заполнителей бетона [13].Можно сделать вывод, что общая плотность бетона AAC-LWA была значительно уменьшена из-за замены LWA, так как его плотность составила всего 360 кг / м 3 . Напротив, прочность на сжатие — это следующий вопрос, который необходимо рассматривать как наиболее важные свойства затвердевшего бетона.


4.4. Стандартное испытание на прочность при сжатии

Стандартное испытание на прочность на сжатие с использованием цилиндрических образцов проводилось в возрасте 1, 3, 7 и 28 дней.Сравнительные измерения прочности при отверждении в воде и сухом воздухе, включая классы размеров, были изучены и представлены на рисунках 11 (a) –11 (c).

Хорошо видно, что все смеси, отвержденные в воде, достигли более высокой прочности, чем смеси, отвержденные в сухом воздухе, поскольку была получена большая степень гидратации [14]. Размерный класс заполнителя S4-AAC (см. Таблицу 2) получил самую высокую прочность среди классов S1, S2 и S3 из-за хорошей градации крупных заполнителей в бетонных смесях в соответствии с ASTM C33 номер 67.Также была достигнута более компактная структура, а также соответствующая блокировка хорошо рассортированного крупного заполнителя. Сопоставимое улучшение прочности, очевидно, было получено за счет более высокой плотности затвердевшего цементного теста в межфазной переходной зоне (ITZ) за счет внутреннего отверждения [15]. Примеры нормального связывания (NWCA) и хорошего связывания (AAC-LWA) представлены на рисунке 12. Можно видеть, что разрушение нормально-связанного NWCA произошло на цементной пасте, в то время как хорошо связанная AAC-LWA была на агрегате AAC.Помимо прочностных свойств каждого заполнителя, AAC-LWA явно продемонстрировал на ITZ потрясающие характеристики склеивания. Тем не менее, окончательная прочность AAC как заполнителя бетона снизилась, когда количество AAC-LWA увеличилось, потому что AAC имеет чрезвычайно низкую несущую способность по сравнению с заполнителем с нормальным весом.


4.5. Минутное испытание на прочность на сжатие

Минутное испытание на прочность на сжатие — это метод, используемый для проверки эффекта внутреннего отверждения пористым заполнителем в бетонных смесях.Прочность на сжатие 3 × 3 × 3 мм. кубические образцы смесей LWA20, LWA40 и LWA60 (все с размером класса S4, отвержденные на воздухе) были испытаны и представлены на Рисунке 13. Видно видно, что прочность образцов, собранных из внешней зоны, была ниже, чем прочность. внутренней зоны. Более того, прочность образца L1 (L1; слой рядом с агрегатом AAC), очевидно, достигла более высокой механической прочности, чем у удаленных слоев L2 и L3 (см. Рисунок 6). В целом, более полное завершение процесса внутренней гидратации AAC-LWA может быть достигнуто за счет способности удерживать воду в бетонной смеси.Специально для пористых заполнителей дополнительная вода для внутреннего отверждения была получена не только из-за водопоглощения, но и из-за адсорбции воды, которая непосредственно влияет на воду для затвердевания бетона на более поздней стадии [16]. Более того, внутренний процесс отверждения также может происходить с «капиллярным всасыванием», при котором перенос воды происходит из более крупных пор в более мелкие. В этом исследовании капиллярные поры агрегатов AAC (от 50 до 100 микрон, мкм, мкм) были больше, чем у средних пор цементного теста (от 1 до 100 нанометров, нм).


В соответствии с этим условием, некоторая запасная вода в заполнителях AAC, следовательно, будет перенесена в цементное тесто через ITZ, увеличивая уровень гидратации цементных вяжущих. На улучшение прочности в более старшем возрасте в основном повлияло большее образование C-S-H и более плотная микроструктура [9]. Использование AAC-LWA в насыщенном сухом состоянии (SSD) в этом исследовании обеспечит более высокую прочность во всех случаях, чем AAC-LWA в исходном / сухом состоянии [15]. Причина в том, что AAC-LWA в полученном виде может активно поглощать воду в системе на начальной стадии смешивания.На ITZ могут появиться микропоры и неполные микроструктуры, что отрицательно скажется на конечных свойствах бетона [15]. Те же тенденции и результаты были получены при минимальной прочности на сжатие размеров класса S4 для LWA20, LWA40 и LWA60, отвержденных в воде. Насколько было подано достаточно воды для отверждения как с внешней, так и с внутренней стороны, средняя прочность 3 × 3 мм. Таким образом, куб был немного выше, чем другие, отвержденные в условиях сухого открытого воздуха (рис. 14).


4.6. Развитие прочности и взаимосвязь между стандартной и минутной прочностью на сжатие

Развитие прочности при минутном испытании на сжатие слоя 1 (L1) за 7 и 28 дней представлено в таблице 4. При использовании NC в качестве эталонной смеси LWA20 достигла наибольшая разница в развитии силы во всех условиях: 34,00% (AC L1 Ext.), 51,10% (AC L1 Int.), 33,33% (WC L1 Ext.) и 42,80% (WC L1 Int.). Огромная разница в минимальной прочности на сжатие L1 может наблюдаться между внешней и внутренней зонами LWA20 (26.98% и 35,32%) и LWA40 (39,03% и 54,99%), как показано в Таблице 5. Очевидно, что минимальная прочность на сжатие в условиях отверждения на воздухе (AC) может быть улучшена с помощью режимов внутреннего отверждения, особенно для внутренняя зона. Оптимальные пропорции AAC-LWA, которые могут получить наибольшую пользу от внутреннего отверждения, находятся в диапазоне смесей от LWA20 до LWA40.


Смеси Отверждение на воздухе (AC) Отверждение водой (WC)
L1 Ext.(МПа) L1 Внутр. (МПа) L1 внешн. (МПа) L1 Внутр. (МПа)
7 d 28 d % Δ 7 d 28 d % Δ 7 d 28 d d 28 d % Δ

NC 0,64 0,84 31,75 0.95 1,30 36,78 0,77 1,21 57,22 1,03 1,54 49,48 1,69 51,10 1,11 1,48 33,33 1,41 2,01 42,08
L93 1,00 7,24 1,30 1,55 19,55 1,26 1,32 4,73 1,57 1,57 1,57 1,13 21,37 1,23 1,62 31,42 1,15 1,43 25,06 1.39 1,80 29,04

9097 L1 7 d (МПа)

2 Смеси с воздухом L1 28 d (МПа) L1 7 d (МПа) L1 28 d (МПа)
Внешн. Внутр. % Δ Внеш. Внутр. % Δ Внеш. Внутр. % Δ Внеш. Внутр. % Δ

NC 0,64 0,95 48,47 0,84 1,30 1,21 1,54 27,86
LWA20 0.83 1,12 34,00 1,12 1,69 51,10 1,11 1,41 26,98 2,03

1,30 39,03 1,00 1,55 54,99 1,26 1,57 23,82 1.32 1,73 30,74
LWA60 0,93 1,23 32,00 1,13 1,62 429 422 1,80 25,51

Напротив, наивысшая минутная прочность на сжатие слоя 1 (L1) также была нанесена на график относительно стандартной цилиндрической прочности на сжатие с классом S4 для размеров 7 и 28 дни возраста.На рисунке 15 представлена ​​зависимость этой минутной и стандартной прочности на сжатие образцов, отвержденных в условиях отверждения в сухом воздухе (AC), как во внешней зоне (рисунок 15 (а)), так и во внутренней зоне (рисунок 15 (б)). Как упоминалось ранее в разделе 4.4, средняя стандартная прочность на сжатие бетона AAC-LWA уменьшилась, когда количество замены AAC-LWA увеличилось с 35,1 МПа (7 дней) и 41,2 МПа (28 дней) в смесях LWA20 до примерно 26,2 МПа (7 дней). г) и 28,1 МПа (28 д) в смесях LWA60. Однако ясно видно, что смеси LWA20 и LWA40, кажется, достигают более высокой прочности, чем у бетона с нормальным заполнителем (NC).

Прочность на сжатие в минуту (как представлено в разделе 4.5) внутренней зоны явно выше, чем внешней, из-за внутреннего отверждения AAC-LWA с самым высоким значением смеси LWA20. Исследование показало, что замена от 20% до 40% AAC-LWA (LWA20 и LWA40) может быть оптимальной пропорцией для бетона AAC-LWA.

Этим можно объяснить, что эти пропорции в основном обеспечивали превосходную прочность заполнителя нормального веса, в то время как подходящее количество замены заполнителя AAC служило дополнительному количеству воды для внутреннего отверждения цементного теста.Увеличение образования C-S-H не только укрепляет бетонные матрицы, но также обеспечивает хорошее сцепление между заполнителем AAC и цементным тестом в их ITZ. Аналогичная тенденция развития прочности была обнаружена у образцов, отвержденных в условиях отверждения в воде (WC), как показано на рисунке 16. Кроме того, как упоминалось ранее, общая прочность на сжатие как мелких, так и стандартных образцов была значительно выше, чем при отверждении сухим воздухом. по мере того, как было получено достаточно воды для отверждения. Несмотря на небольшую разницу в прочности на сжатие между отверждением в воде и на воздухе, при котором запас воды рециклированного заполнителя AAC не является необходимым для обеспечения влаги для дальнейшего процесса гидратации цемента, эффективность внешнего отверждения может быть ограничена из-за неудовлетворительного проникновения воды для затвердевания в цемент. образцы, и внутреннее отверждение затем увеличит положительный режим отверждения изнутри бетонной конструкции в реальных приложениях (например,г., огромная конструкция или бетонный элемент).

5. Выводы

По результатам исследования можно резюмировать следующие выводы.

На значения осадки повлияло количество воды. Величина осадки имела тенденцию к увеличению с увеличением замены AAC-LWA, поскольку на поверхности заполнителя была получена дополнительная вода. Однако значения расхода всех смесей были аналогичны бетону с нормальным весом (NC) и были отнесены к категории средней плотности с расходом от 50 до 60%.

Кажущаяся плотность была уменьшена, когда количество замены AAC-LWA увеличилось с 2380 кг / м 3 (NC) до примерно 2050 кг / м 3 (LWA60). Хотя минимальная плотность в этом испытании (2030 кг / м 3 в смеси LWA60) не соответствовала критериям легкого бетона, рекомендованным ACI 213R-87 при 1850 кг / м 3 , более низкое значение плотности может быть альтернативно достигается за счет увеличения доли AAC-LWA или даже использования легких мелких заполнителей (например,г., легкий песок или зольный остаток).

Стандартная прочность на сжатие цилиндрических образцов была уменьшена с увеличением доли AAC-LWA как при отверждении сухим воздухом, так и при отверждении в воде, хотя при отверждении в воде была достигнута немного более высокая прочность на сжатие. Смешанный размер AAC-LWA (размер класса S4) обеспечивал удовлетворительную градацию и более высокую прочность, чем отдельные гранулированные заполнители (S1, S2 и S3).

Наивысшая прочность при минутном испытании на сжатие была достигнута при 3 × 3 × 3 мм.куб, расположенный в слое 1 (L1), за которым следуют слой 2 (L2) и слой 3 (L3) соответственно. Можно сделать вывод, что внутреннее отверждение с помощью AAC-LWA, очевидно, улучшает прочность бетона, обеспечивая дополнительный внутренний водный ресурс для более возможного образования C-S-H. В сочетании с минимальной и стандартной прочностью на сжатие оптимальные пропорции замены AAC-LWA находились в диапазоне от LWA20 до LWA40. Эти пропорции смеси в основном обеспечивали превосходную прочность заполнителя нормального веса, в то время как подходящее количество замены заполнителя AAC обеспечивало дополнительное количество воды для внутреннего отверждения цементной пасты.

Разработка AAC в качестве замены грубого заполнителя в бетоне заключается не только в использовании нежелательных промышленных отходов (переработка отходов), но и в создании новых знаний об использовании LWA в качестве внутреннего отвердителя, а также в производстве ценностей. добавлены изделия из легкого бетона.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

% PDF-1.4 % 1 0 объект > поток 2019-01-28T18: 42: 11 + 01: 002021-12-27T13: 39: 58-08: 002021-12-27T13: 39: 58-08: 00iТекст 4.2.0 от 1T3XTuuid: 3282da2a-90a2-4f25-92e1-72504a68e2f1xmp.did: 380145627B2EE911A5469F9FE0B6FFFAxmp.did: 380145627B2EE911A5469F9FE0B6FFFA

  • savedxmp.iid: 380145627B2EE911A5469F9FE0B6FFFA2019-02-12T09: 35: 07 + 05: 30Adobe Мост CS6 (Windows) / метаданных
  • application / pdf
  • Юрий Фамуляк
  • Богдан Демчина
  • Юстина Собчак-Пиньстка
  • конечный поток эндобдж 2 0 obj > эндобдж 3 0 obj > поток xXKo7 ﯘ? `E @` E {+ [SRp / $ RҌzDQ٧Z $ ~ G% ˷ ~ e- ܧ_ r ~ HZ;) dTEqRbpt (ᤗ Q (bFNOWvUnZB ^ ‘) ^ + ^ r ^, ^ W) T / 螞} i% k’6; ژ 7?] EZƭ j: FKXa F \ Y * =] ^: 1 @ [_ X0t9FtlJ @ +; Z (N Mk; L [Ok`ɢ3 = stpl8 = 2 = Krz

    Формы для кубиков из пенобетона — Propump Engineering Ltd

    Пенобетон не следует испытывать с использованием традиционных стальных кубических форм, характеристическая прочность значительно ухудшается, если (небольшой репрезентативный) объем не изолирован и оставлен для отверждения на воздухе в течение заданного периода испытаний.

    Изолирующие свойства полистирола позволяют образцам отверждаться и гидратироваться аналогично изоляционному пенобетонному материалу, из которого взят образец, и, следовательно, дает гораздо более точный репрезентативный результат прочности.

    Полистирол обеспечивает изоляцию и защиту от вибрации для кубиков свежего пенобетона, позволяя защитить структуру ячеек в критический начальный период схватывания.

    Полистирол, несмотря на то, что он относительно слабый и не соответствует стандартам BS: EN для традиционного изготовления бетонных кубов, обеспечивает идеальную оболочку для пенобетона.Традиционный бетон необходимо утрамбовать в кубе, после высыхания его необходимо удалить и затвердеть в воде, все это не требуется для пенобетона и вызовет неблагоприятные последствия.

    Формы из полистирола также могут использоваться для отбора проб цементного раствора, растворов, стяжек, образцов грунта и многих других материалов.

    Большое количество кубических форм диаметром 100 и 150 мм хранится на складе, и их можно приобрести с доставкой на следующий день.

    Пожалуйста, позвоните в офис, чтобы узнать актуальные цены, по телефону 01322 429 900 или по электронной почте info @ propump.co.uk

    Использование форм для кубов на месте

    Одноразовые кубические формы после заполнения обычно оставляют на месте для отверждения перед перемещением.

    Полистирол обеспечивает отличную основу для обозначения куба, места заливки и даты заливки, а также гарантирует, что вся информация может быть четко записана и перенесена в лабораторию, проводящую испытания на прочность.

    После того, как начальное схватывание произошло и кубики подходят для транспортировки, как правило, они собираются сторонней проверенной и утвержденной лабораторией для испытаний бетона, где они хранятся до возраста, необходимого для тестирования.Затем образцы вынимают из форм для полистирола и тестируют как обычно.

    Propump ежедневно использует 150-миллиметровые кубические формы в рамках собственного процесса контроля и обеспечения качества, производя наборы из трех кубиков для каждого теста, проводимого в качестве репрезентативного образца помещаемого материала. Кубики обычно тестируются через 28 и 90 дней (2 через 28 дней, 1 через 90 дней), если не указано иное.

    Исследователи Мессины разработали легкую высокопрочную цементную смесь для 3D-печати бетона

    Исследователи из Мессинского университета разработали легкий пенобетон для более эффективной 3D-печати строительных конструкций без использования опалубки.В отличие от традиционного легкого пенобетона, новый материал (3DPC) может сохранять свою форму в «расплавленном» или «свежем» состоянии благодаря очень высокой вязкости. После обширных испытаний команда также обнаружила, что специально разработанный бетон имеет более высокую прочность на сжатие, чем у обычного бетона (CC), что делает его потенциально жизнеспособным для промышленного использования.

    Легкий пенобетон

    Пенобетон — это термин, обозначающий цементные материалы низкой плотности, в которые добавлен пенообразователь для добавления воздуха.Наличие пузырьков воздуха в смеси дает бетону некоторые специфические (но удивительно полезные) свойства, такие как малый вес, теплоизоляция, звукопоглощение и огнестойкость — все это крайне желательно в строительной отрасли. Однако у легкого пенобетона есть свои недостатки. Обычные пенобетоны часто обладают низкой механической прочностью и нестабильностью, что делает их непригодными для любого практического строительства.

    Исследователи из Мессины приступили к работе над созданием своей собственной новой легкой смеси для 3DPC из трех различных типов коммерчески доступного цемента с «пеной С», выступающей в качестве вспенивающего агента.

    Сравнение распределения пустот в поперечном сечении CC (слева) и 3DPC (справа). Изображение взято из Университета Медины.

    Бетон и бетон

    Исследование показало, что 3DPC сравнивают с CC двумя разными способами. Первый включал сравнение стабильности размеров двух бетонов в их свежем состоянии (испытание на экструзию), а второй был битвой за прочность на сжатие.

    Образцы цемента формируются перед испытаниями. Фотографии из Университета Медины.

    Шесть кубиков высотой 4.5 см были сформированы из двух свежих цементов. Кубики оставляли в покое на срок до 40 минут, после чего измеряли и документировали «расстояния оседания» двух материалов. Исследователи пришли к выводу, что их специально разработанный 3DPC был намного более вязким, чем стандартный CC, и сохранял свою форму неопределенно долго, в то время как CC в конечном итоге расплющивался. Таким образом, новый бетон можно было напечатать на 3D-принтере без какой-либо опалубки, и он мог бы в достаточной степени поддерживать себя до завершения процесса отверждения.

    Образцы свежего цемента кубической формы, подвергнутые испытанию на экструзию с выдержкой в ​​пять минут (CC вверху и 3DPC внизу). Изображение взято из Мессинского университета.

    Затем другой набор подобных образцов был оставлен для отверждения в различных средах, и их прочности на сжатие были сопоставлены друг с другом. В среднем 3DPC команды продемонстрировал значительно более высокую прочность на сжатие, чем CC, при всех значениях плотности в сухом состоянии (400–800 кг / м³), что делает его более чем способным выдерживать нагрузки, возникающие в стенах зданий.

    Прочность образцов цемента на сжатие в зависимости от плотности в сухом состоянии и отверждающих сред. Изображение взято из Университета Медины.

    Более подробную информацию об исследовании можно найти в статье « для 3D-печати легкого пенобетона и сравнение с классическим пенобетоном с точки зрения свойств свежего состояния и механической прочности ». Соавторами его являются Девид Фальяно, Дарио де Доменико, Джузеппе Риккарди и Эрнесто Гульандоло.

    3D-печать бетоном начала привлекать серьезное внимание как компаний, так и исследовательских центров.Инженеры из Университета Пердью начали работу над методом 3D-печати бетонных деталей ветряных турбин для использования на море. В случае успеха недорогие детали будут отправлены в 30 милях от побережья США и установлены на морском дне. В другом месте, в Дубае, Twente AM представила свой последний крупномасштабный 3D-принтер для бетона с объемом печати 391 м³.

    Открыты заявки на участие в конкурсе 2020 3D Printing Industry Awards . Как вы думаете, кто должен войти в шорт-лист шоу в этом году? Скажи свое слово сейчас.

    Подпишитесь на информационный бюллетень индустрии 3D-печати , чтобы получать последние новости в области аддитивного производства. Вы также можете оставаться на связи, подписавшись на нас в Twitter и поставив нам лайк на Facebook.

    Ищете карьеру в аддитивном производстве? Посетите Работа для 3D-печати , чтобы узнать о вакансиях в отрасли.

    На изображении показаны образцы свежего цемента кубической формы, подвергнутые испытанию на экструзию с выдержкой в ​​пять минут.Изображение взято из Мессинского университета.

    .
    Газобетона куб: Газобетонные блоки — купить газоблоки по низкой цене за куб в Москве

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *