Дсп горючесть: классификация и примеры строительных материалов с разными группами горючести

Группа горючести Г1, Г2, Г3, Г4, НГ веществ и материалов

Группа горючести – это классификационная характеристика способности веществ и материалов к горению.

При определении пожаровзрывоопасности веществ и материалов (ГОСТ 12.1.044-89. Пожаровзрывоопасность веществ и материалов), различают:

  • газы – это вещества, давление насыщенных паров которых при температуре 25 °С и давлении 101,3 кПа превышает 101,3 кПа;
  • жидкости – это вещества, давление насыщенных паров которых при температуре 25 °С и давлении 101,3 кПа меньше 101,3 кПа. К жидкостям относят также твердые плавящиеся вещества, температура плавления или каплепадения которых меньше 50 °С.
  • твердые вещества и материалы – это индивидуальные вещества и их смесевые композиции с температурой плавления или каплепадения больше 50 °С, а также вещества, не имеющие температуру плавления (например, древесина, ткани и т.п.).
  • пыли – это диспергированные твердые вещества и материалы с размером частиц менее 850 мкм.

Одним из показателей пожаровзрывоопасности веществ и материалов является группа горючести.

Вещества и материалы

Согласно ГОСТ 12.1.044-89 по горючести вещества и материалы подразделяются на следующие группы (за исключением строительных, текстильных и кожевенных материалов):

  1. Негорючие.
  2. Трудногорючие.
  3. Горючие.

Негорючие – это вещества и материалы, неспособные гореть в воздухе. Негорючие вещества могут быть пожаровзрывоопасными (например, окислители или вещества, выделяющие горючие продукты при взаимодействии с водой, кислородом воздуха или друг с другом).

Трудногорючие – это вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но неспособные самостоятельно гореть после его удаления.

Горючие – это вещества и материалы, способные самовозгораться, а также возгораться при воздействии источника зажигания и самостоятельно гореть после его удаления.

Сущность экспериментального метода определения горючести заключается в создании температурных условий, способствующих горению, и оценке поведения исследуемых веществ и материалов в этих условиях.

Твердые в т.ч. пыли

Материал относят к группе негорючих, если соблюдены следующие условия:

  • среднеарифметическое изменение температуры в печи, на поверхности и внутри образца не превышает 50 °С;
  • среднеарифметическое значение потери массы для пяти образцов не превышает 50% от их среднего значения первоначальной массы после кондиционирования;
  • среднеарифметическое значение продолжительности устойчивого горения пяти образцов не превышает 10 с. Результаты испытаний пяти образцов, в которых продолжительность устойчивого горения составляет менее 10 с, принимают равными нулю.

По значению максимального приращения температуры (Δtmax) и потере массы (Δm) материалы классифицируют:

  • трудногорючие: Δtmax < 60 °С и Δm < 60%;
  • горючие: Δtmax ≥ 60 °С или Δm ≥ 60%.

Горючие материалы подразделяют в зависимости от времени (τ) достижения (tmax) на:

  • трудновоспламеняемые: τ > 4 мин;
  • средней воспламеняемости: 0,5 ≤ τ ≤ 4 мин;
  • легковоспламеняемые: τ < 0,5 мин.

Газы

При наличии концентрационных пределов распространения пламени газ относят к горючим; при отсутствии концентрационных пределов распространения пламени и наличии температуры самовоспламенения газ относят к трудногорючим; при отсутствии концентрационных пределов распространения пламени и температуры самовоспламенения газ относят к негорючим.

Жидкости

При наличии температуры воспламенения жидкость относят к горючим; при отсутствии температуры воспламенения и наличии температуры самовоспламенения жидкость относят к трудногорючим. При отсутствии температур вспышки, воспламенения, самовоспламенения, температурных и концентрационных пределов распространения пламени жидкость относят к группе негорючих. Горючие жидкости с температурой вспышки не более 61 °С в закрытом тигле или 66 °С в открытом тигле, зафлегматизированных смесей, не имеющих вспышку в закрытом тигле, относят к легковоспламеняющимся. Особо опасными называют легковоспламеняющиеся жидкости с температурой вспышки не более 28 °С.

Классификация строительных материалов

Определение группы горючести строительного материала

Пожарная опасность строительных, текстильных и кожевенных материалов характеризуется следующими свойствами:

  1. Горючесть.
  2. Воспламеняемость.
  3. Способность распространения пламени по поверхности.
  4. Дымообразующая способность.
  5. Токсичность продуктов горения.

Строительные материалы в зависимости от значений параметров горючести подразделяют по группам на негорючие и горючие (для напольных ковровых покрытий группа горючести не определяется).

НГ негорючие

Негорючие строительные материалы по результатам испытаний по методам I и IV (ГОСТ Р 57270-2016. Материалы строительные. Методы испытаний на горючесть) подразделяют на 2 группы.

Строительные материалы относят к негорючим I группы при следующих среднеарифметических значениях параметров горючести по методам I и IV (ГОСТ Р 57270-2016):

  • прирост температуры в печи не более 30 °C;
  • потеря массы образцов не более 50%;
  • продолжительность устойчивого пламенного горения – 0 с;
  • теплота сгорания не более 2,0 МДж/кг.

Строительные материалы относят к негорючим II группы при следующих среднеарифметических значениях параметров горючести по методам I и IV (ГОСТ Р 57270-2016):

  • прирост температуры в печи не более 50 °C;
  • потеря массы образцов не более 50%;
  • продолжительность устойчивого пламенного горения не более 20 с;
  • теплота сгорания не более 3,0 МДж/кг.

Допускается относить без испытаний к негорючим I группы следующие строительные материалы без окрашивания их внешней поверхности либо с окрашиванием внешней поверхности составами без использования полимерных и (или) органических компонентов:

  • бетоны, строительные растворы, штукатурки, клеи и шпатлевки, глиняные, керамические, керамогранитные и силикатные изделия (кирпичи, камни, блоки, плиты, панели и т.п.), фиброцементные изделия (листы, панели, плиты, трубы и т.п.) за исключением во всех случаях материалов, изготавляемых с применением полимерного и (или) органического вяжущего заполнителей и фибры;
  • изделия из неорганического стекла;
  • изделия из сплавов стали, меди и алюминия.

Строительные материалы, не удовлетворяющие хотя бы одному из вышеуказанных указанных значений параметров I и II группы негорючести, относятся к группе горючих и подлежат испытанию по методам II и III (ГОСТ Р 57270-2016). Для негорючих строительных материалов другие показатели пожарной опасности не определяют и не нормируют.

Горючие строительные материалы в зависимости от значений параметров горючести, определяемых по методу II, подразделяют на четыре группы горючести (Г1, Г2, Г3, Г4)

в соответствии с таблицей. Материалы следует относить к определенной группе горючести при условии соответствия всех среднеарифметических значений параметров, установленных таблицей для этой группы.

Г1 слабогорючие

Слабогорючие – это материалы, имеющие температуру дымовых газов не более 135 °C, степень повреждения по длине испытываемого образца не более 65 %, степень повреждения по массе испытываемого образца не более 20 %, продолжительность самостоятельного горения 0 секунд.

Г2 умеренногорючие

Умеренногорючие – это материалы, имеющие температуру дымовых газов не более 235 °C, степень повреждения по длине испытываемого образца не более 85 %, степень повреждения по массе испытываемого образца не более 50 %, продолжительность самостоятельного горения не более 30 секунд.

Г3 нормальногорючие

Нормальногорючие – это материалы, имеющие температуру дымовых газов не более 450 °C, степень повреждения по длине испытываемого образца более 85 %, степень повреждения по массе испытываемого образца не более 50 %, продолжительность самостоятельного горения не более 300 секунд.

Г4 сильногорючие

Сильногорючие – это материалы, имеющие температуру дымовых газов более 450 °C, степень повреждения по длине испытываемого образца более 85 %, степень повреждения по массе испытываемого образца более 50 %, продолжительность самостоятельного горения более 300 секунд.

Таблица

Группа горючести материаловПараметры горючести
Температура дымовых газов T, °CСтепень повреждения по длине SL, %Степень повреждения по массе Sm, %Продолжительность самостоятельного горения tc. г, с
Г1До 135 включительноДо 65 включительноДо 200
Г2До 235 включительноДо 85 включительноДо 50До 30 включительно
Г3
До 450 включительноСвыше 85До 50До 300 включительно
Г4Свыше 450Свыше 85Свыше 50Свыше 300
Примечание. Для материалов, относящихся к группам горючести Г1-Г3, не допускается образование горящих капель расплава и (или) горящих фрагментов при испытании. Для материалов, относящихся к группам горючести Г1-Г2, не допускается образование расплава и (или) капель расплава при испытании.

Видео, что такое группа горючести

Источники: НПБ 105-2003. Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности; Баратов А.Н. Горение – Пожар – Взрыв – Безопасность. -М.: 2003; ГОСТ 12.1.044-89 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения; ГОСТ Р 57270-2016 Материалы строительные. Методы испытаний на горючесть.

Поскольку массовое применение токсичных, экологически опасных древесных плит в строительстве, безусловно, нанесет серьезный ущерб здоровью миллионов людей, необходимо серьезно и аргументированно рассмотреть эколого-технические характеристики наиболее масс

Чтобы эколого-техническая оценка древесных плит не носила произвольный характер, напомним четыре основных принципа экологической безопасности материалов для жилого дома.

1. Химическая безопасность: материалы не должны выделять в воздух помещений вредные летучие вещества, а концентрация каких-либо летучих веществ в воздухе жилых помещений не должна превышать среднесуточную концентрацию вещества в атмосферном воздухе — ПДК.


2. Физическая безопасность: материалы должны обеспечивать в помещении тепловой комфорт по величине допустимых значений коэффициента теплосопротивления и коэффициента теплопроводности; материалы не должны электризоваться и накапливать на поверхности заряды статического электричества; материалы не должны экранировать геомагнитное поле земли и излучения из космоса; при ветровых нагрузках материалы не должны быть источником звуковых колебаний на частотах, вредных для здоровья человека; материалы для стен, перегородок и перекрытий должны обладать эффективным звукопоглощением.
3. Пожарная безопасность: все материалы, применяемые в малоэтажном деревянном доме, должны быть по категории горючести не хуже Г2, а стропильная система и перекрытия — Г1, со временем сохранения конструкционной прочности при пожаре Р60.
4. Биологическая безопасность:
 все материалы, применяемые в доме, должны быть антисептированы не токсичными для человека антисептиками, не выделяющими в воздух помещений никаких вредных веществ.
Здесь необходимо пояснить, что каждый материал, применяемый в доме, должен соответствовать всем вышеуказанным требованиям одновременно. Только в этом случае жильцам дома может быть гарантировано безопасное проживание, как в обычных условиях эксплуатации помещений, так и в экстремальных ситуациях.

Фанера
Основной объем фанеры в России представлен многослойной фанерой из лущеного шпона, получаемой путем горячего прессования пакета березового шпона, обработанного предварительно клеями на основе карбамидоформальдегидных и фенолформальдегидных смол.
Все фанеры с карбамидформальдегидным связующим выделяют в воздух помещений формальдегид и метанол. Формальдегид является канцерогенным веществом и в этом качестве внесен в список канцерогенов Всемирной организации здравоохранения. Метанол также относится к высокотоксичным веществам.

Достаточно широко известно, что по европейским стандартам ДПМ с формальдегидными связующими по содержанию формальдегида в мг/100 г материала делятся на три категории: Е0 — 6 и менее мг/100 г; Е1 — от 9 до 7 мг/100 г; Е2 — от 10 до 20 мг/100 г.  
Лучшие виды фанер, выпускаемых в Российской Федерации, соответствуют всего лишь классу Е2. В странах Восточной и Западной Европы выпускаются фанеры класса Е1, получаемые за счет применения КФ-смол с резко пониженным содержанием формальдегида и метанола. Однако для широкого применения в строительстве не подходит ни фанера Е1, ни тем более Е2. Причины здесь две: 1) отвержденные КФ-смолы, независимо от любых обстоятельств, постоянно отщепляют формальдегид, и 2) уровень его выделения в воздух помещений повышается при повышении температуры и влажности.
В России официально установлено значение ПДК для формальдегида, равное 0,003 мг/м3 воздуха, — это самая жесткая ПДК в мире, что вызвано доказанной канцерогенностью формальдегида. В силу этого, любая фанера, использованная для чернового пола или отделки стен, потолков, будет создавать в помещении концентрацию формальдегида, в 10 и более раз превышающую ПДК.
Для того чтобы вернуть фанеру как отделочный материал в строительство жилья, необходим целый ряд серьезных мер по улучшению качества смолы и введению в состав клеев компонентов, активно поглощающих (необратимо) формальдегид в течение всего срока эксплуатации фанеры, то есть осуществить комплекс технологических и композиционных нововведений, сводящихся к радикальной детоксикации фанеры. Что же касается бакелитовых фанер вышеуказанных марок, то они еще более токсичны, чем фанеры на основе карбамидоформальдегидных связующих, так как, помимо формальдегида и метанола, выделяют в воздух высокотоксичный фенол. Наличие в воздухе одновременно формальдегида, метанола и фенола превращает помещение в настоящую газовую камеру.
Подавляющая масса производимой в РФ фанеры относится к категории горючести Г4, то есть к полностью сгораемым материалам. Только одно предприятие в РФ выпускает трудногорючую фанеру класса Г2, применяемую в вагоно- и судостроении. В то же время введение в состав клеев для фанеры эффективных отечественных антипиренов (одновременно являющихся детоксикантами), а также обработка шпона после выравнивающих вальцов водными растворами высокоэффективных и нетоксичных антипиренов позволяют с небольшими изменениями технологии получать фанеру класса горючести Г2 и, при желании, Г1, с одновременным многократным снижением уровня выделения формальдегида.

Древесно-стружечные плиты — ДСП, ДСТП 
Ни одна из разновидностей ДСП, изготавливаемых в России, не соответствует требованиям химической безопасности, прежде всего из-за постоянного, в течение всего времени эксплуатации выделения в воздух помещений формальдегида. Даже при использовании ДСП класса Е1 превышение концентрации формальдегида в воздухе помещений будет многократным по сравнению с ПДК в России. Именно по этой причине Минздрав СССР в конце 80-х годов XX века официально запретил использование ДСП (а также фанеры) в жилищном строительстве.
Никаких претензий к ДСП с точки зрения физической безопасности не имеется.
В сухих помещениях ДСП соответствуют критерию биологической безопасности. В помещениях с повышенной влажностью могут появляться грибковые образования,
Подавляющая часть выпускаемых в России ДСП относится по горючести к классу Г4 и без специальной противопожарной обработки не может быть использована в жилищном строительстве.
Таким образом, по двум важнейшим критериям экологической безопасности — химической и пожарной российские ДСП не могут быть использованы в жилищном строительстве. Для серьезной реабилитации всех разновидностей ДСП необходимо:
— вводить в состав ДСП детоксиканты, необратимо поглощающие формальдегид в течение всего срока эксплуатации со скоростью, превышающей скорость отщепления формальдегида от отвержденной карбамидоформальдегидной смолы;
— вводить в состав ДСП эффективные антипирены постоянного действия;
— при строительстве жилых помещений обрабатывать внутреннюю поверхность ДСП детоксицирующей и огнезащитной грунтовкой, снижающей как минимум в 10 раз уровень выделения в воздух формальдегида и полностью поглощающей фенол.
Обработанная ДСП переходит по горючести из класса Г4 в класс Г1.

Ориентированные стружечные плиты — ОСП (OSB-плиты)
За последние три года в рекламно-технических публикациях, посвященных плитам OSB, участилось упоминание так называемых водостойких OSB, к которым относятся OSBЗ и OSB4. Авторы многих публикаций наибольшее внимание уделяют OSBЗ, которые сочетают высокую прочность, водостойкость и приемлемую цену. 
Из публикаций, посвященных плитам OSB3 и OSB4, выяснилось, что повышенные прочность и влагостойкость достигаются за счет химико-технологического приема 60-летней давности, а именно путем замены в связующем части карбамидоформальдегидной смолы на фенолформальдегидную и меламинформальдегидную, а также за счет использования смол смешанного состава, например, фенолмеламинкарбамидформальдегидной смолы. В результате этого к выделениям формальдегида из плит OSB, OSB1 и OSB2 добавляются выделения фенола.
Важно также отметить, что «водостойкая» и токсичная плита OSBЗ имеет разбухание по толщине после выдержки в воде 24 часа 20%, а нетоксичная ЦСП марки ЦСП1 — 2% и при этом не называется «водостойкой».
С точки зрения экологической безопасности основная масса плит OSB не проходит в России как материал для жилищного строительства по тем же причинам, что и плиты ДСП, а именно: плиты OSB не соответствуют критериям химической и пожарной безопасности. Несоответствие критерию химической безопасности плит OSB отражено в официальных заключениях различных контрольных органов Российской Федерации.
По горючести плиты OSB относятся к категории Г4. В связи с этим понятно, почему в многочисленных рекламных и рекламно-технических проспектах и статьях ничего не говорится о горючести OSB, в то время как показатели пожарной опасности материалов и конструкций являются важнейшими характеристиками экологической безопасности домов.
Таким образом, выпускаемые в настоящее время плиты OSB неприемлемы для строительства по критериям химической и пожарной опасности. 
В связи с этим уместно отметить, что некоторые фирмы, рассчитывающие продавать плиты OSB на российском рынке и знающие о жесткой ПДК для формальдегида в России, пошли на следующее ухищрение. Они стали использовать в качестве связующего жидкие смолы — продукт конденсации бисфенолов с дифенилметандиизоцианатом — и в проспектах пишут: «Наши плиты OSB не содержат формальдегида». При этом не упоминается, что фенолдиизиционатные связующие после отверждения выделяют фенол и органический растворитель, а при горении — набор высокотоксичных веществ, включая синильную кислоту. 

Плиты МДФ
В помещениях, отделанных стеновыми панелями или половой доской на основе ламинированных плит МДФ, концентрация формальдегида в воздухе в десятки раз превышает ПДК. При этом уместно упомянуть об одном широко распространенном заблуждении: якобы ламинирование древесно-плитных материалов декоративной бумагой или бумажно-слоистым пластиком существенно снижает уровень выделения формальдегида. Дело обстоит как раз наоборот: и декоративная бумага, и бумажно-слоистые пластики пропитаны меламиноформальдегидными смолами, которые после отверждения сами выделяют формальдегид, добавляя его к выделениям из плиты-основы. С точки зрения пожарной безопасности плиты МДФ относятся к категории горючести Г4 и с этой точки зрения не соответствуют требованиям экологической безопасности к материалам жилищного строительства.

Древесно-волокнистые плиты высокой плотности (твердые) — ДВП-Т
С точки зрения химической опасности плиты ДВП-Т более благополучны, чем рассмотренные ранее плитные материалы. Это вызвано, прежде всего, тем, что при изготовлении ДВП-Т содержание связующего фенолформальдегидной смолы по сухому волокну составляет всего лишь 2,5—3,0% при содержании в ней собственно фенолформальдегидного олигомера 30%, в то время как содержание смол в ранее рассмотренных материалах ДСП, ОЗВ, МДФ составляет 11—14% массовых частей по сухому веществу. В связи с этим уровень выделения из плит ДВП-Т формальдегида и фенола значительно ниже. Однако при санитарно-химической оценке ДВП-Т при 40°С в камере концентрации формальдегида и фенола все же превышают ПДК. 
Помимо этого, у предприятий, производящих ДВП-Т по мокрому способу, большие проблемы с загрязнением сточных вод фенолом. В связи с этим по-прежнему очень актуальным остается вопрос о применении связующих, не содержащих ни фенола, ни формальдегида, ни каких-либо других вредных веществ, способных «высаживаться» на древесном волокне при изменении рН водной среды.
Что касается пожарной опасности, то плиты ДВП-Т относятся к категории Г4, то есть к полностью сгораемым материалам. Однако по легкости и технологичности применения в строительстве ДВП-Т является очень привлекательным материалом. Исходя из этого, рекомендуется обработка ДВП-Т в построечных условиях составом, который полностью поглощает и фенол, и формальдегид в течение всего срока эксплуатации и снижает горючесть ДВП-Т до категории Г2, то есть плита приобретает полное соответствие требованиям экологической безопасности.

В заключительной части настоящей публикации целесообразно рассмотреть эколого-технические характеристики некоторых неорганических плитных материалов, по поводу которых довольно часто возникают споры, а в рекламно-технических публикациях содержится много противоречивых данных.

Листы асбоцементные плоские
С точки зрения химической безопасности оценки ЛАП серьезно различаются в России и в Западной Европе. В Западной Европе ЛАП были запрещены к применению в строительстве еще в 80-х годах XX века, и здания, в которых было большое количество ЛАП, были разрушены, например, в Восточной Германии. Резко негативное отношение к ЛАП обусловливалось утверждением, что ЛАП при эксплуатации выделяют тонкие волокна асбеста, которые через воздух попадают в легкие человека и провоцируют развитие рака легких. Российские токсикологи и гигиенисты с этим мнением не согласны, и в России нет запрета на применение ЛАП. Мнение экспертов по этому вопросу следующее: ЛАП становятся полностью химически безопасными, если обе поверхности обработаны нетоксичным, трудногорючим покрытием, полностью исключающим попадание в воздух волокон асбеста в течение всего срока эксплуатации. С точки зрения горючести ЛАП относится к негорючим материалам, физически безопасен, стоек к любым видам биологического воздействия. К недостаткам материала относятся хрупкость, трудная обрабатываемость, отсутствие теплоизолирующих свойств. 

Стекломагнезитовый лист — СМЛ
С точки зрения экологической безопасности в рекламно-технических публикациях СМЛ характеризуются как полностью экологически безопасный материал. По пожарной безопасности СМЛ относятся к негорючим материалам. Особенности химического состава СМЛ обеспечивают его биологическую безопасность. С точки зрения физической безопасности СМЛ также характеризуется положительно. Однако с химической безопасностью СМЛ отнюдь не все ясно. Дело в том, что основой СМЛ является магнезиальный цемент, который получают смешением магнезиального вяжущего и затворителя — хлористого магния, который относится к категории солей слабых оснований и сильных кислот, а, следовательно, во влажной среде подвержен гидролизу с выделением хлористого водорода. Какая доля НСl вновь связывается с гидроксидом магния, а какая выделяется в воздух — неизвестно, и этот вопрос требует специального изучения.  
Говоря об эксплуатационных характеристиках СМЛ, необходимо отметить еще одно противоречие — в большинстве материалов подчеркивается высокая влагостойкость СМЛ, и в то же время в работах специалистов по магнезиальным вяжущим отмечается буквально следующее: хлорид магния высокогигроскопичен, поэтому изделия из каустического магнезита, затворенные хлоридом магния, весьма гигроскопичны. Тем не менее, учитывая технические характеристики и технологичность в применении, можно предположить, что объемы производства и продаж СМЛ на рынке плитных материалов будут заметно расти в ближайшие годы.

Безопасна ли мебель из ДСП?

toggle

Главная > Небольшие изменения > Устойчивая жизнь > Что такое устойчивая жизнь?

Источник: iStock

ДСП доступна по цене и прочна, но знаете ли вы, что эта дешевая альтернатива натуральному дереву может быть небезопасной для вашего дома?

Вы только что переехали в свою квартиру. Это слишком дорого, конечно, и слишком мало, но это ваше. Что касается мебели, вам пришлось довольствоваться дешевыми и красивыми предметами из местного магазина Target. Хотя они не совсем из красного дерева — просто хлипкая ДСП, покрытая блестящим, плохо приклеенным пластиком, — но они выдержат ваши вещи. Все равно они у вас ненадолго, верно?

Продолжение статьи под рекламой

Как оказалось, эти дрянные книжные шкафы и куски футона могут в конечном итоге доставить больше проблем, чем пользы. На самом деле гораздо больше проблем. Несколько исследований безопасности древесно-стружечных плит выявили несколько ошеломляющих откровений о его предполагаемой токсичности и о том, как это может со временем повлиять на вас и вашу семью.

Источник: iStock

Продолжение статьи ниже рекламного объявления

Что такое ДСП?

Что ж, давайте начнем с того, что ДСП с самого начала получила плохую репутацию. Этот древесно-стружечный продукт, также известный как древесно-стружечная плита, изготавливается путем прессования древесной стружки или джутовой стружки с синтетической смолой или другими подходящими связующими веществами. Полученную «древесину» прессуют, экструдируют и продают для изготовления всех видов строительных материалов, от мебели до напольных покрытий.

ДСП — это переработанный материал, что делает его привлекательным для тех, кто хочет снизить воздействие на окружающую среду, а также имеет места для хранения своих вещей. Конечно, вместо этого вы можете просто купить подержанную мебель, что является гораздо лучшим способом повторного использования существующих ресурсов, не создавая более дешевого и, в конечном счете, одноразового мусора.

Продолжение статьи ниже рекламного объявления

Источник: iStock

Для чего используется древесностружечная плита?

За годы, прошедшие с момента изобретения, древесно-стружечная плита стала популярным материалом для недорогой мебели, и в результате этот материал оказал огромное влияние на дизайн мебели. Однако так было не всегда. На самом деле ДСП 1950-х годов была дорогой роскошью, которую покупали только люди, не желавшие «обыденности» настоящего дерева. Только когда процесс его создания стал более упорядоченным, стоимость снизилась.

Продолжение статьи ниже объявления

Крупные компании начали производить мебель по гораздо более низкой цене, а некоторые крупные компании даже основывают свои стратегии на предоставлении мебели по низкой цене. Начали появляться различные сорта древесно-стружечных плит, каждый из которых имел разную степень прочности. Чем тоньше сорт, тем слабее доска. Тем не менее, это псевдодеревянное чудо вскоре вытеснило материалы многих авторитетных краснодеревщиков, которые в противном случае изготовили бы их из цельного дерева.

Безопасна ли древесностружечная плита?

Было много слухов о безопасности ДСП. Речь идет не только о методах его производства, но и о том, как он используется. Например, при машинной резке досок в воздух могут выбрасываться мелкая пыль и химикаты. Теперь мы знаем, что вдыхать опилки уже не очень хорошая идея, но становится еще опаснее, когда внутри этих опилок есть токсичные соединения.

Продолжение статьи под рекламой

При резке древесно-стружечных плит предположительно могут выделяться такие вещества, как формальдегид, угарный газ, цианистый водород или фенол, в зависимости от типа смолы, используемой в его конструкции. Излишне говорить, что ни одно из этих химических веществ не должно находиться на вашей коже в течение длительного периода времени, не говоря уже о легких. Это та же самая причина, почему вы никогда не должны сжигать ДСП в яме для костра на заднем дворе. Дым может выделять токсичные элементы в окружающий воздух.

Источник: iStock

Продолжение статьи ниже рекламного объявления

Является ли ДСП токсичным?

Другая проблема связана с вышеупомянутым формальдегидом, который является известным канцерогеном. Обеспокоенность по поводу высокого уровня содержания формальдегида в новых домах впервые возникла в 1984 году. Расследование, проведенное Министерством жилищного строительства и городского развития США, показало, что древесно-стружечные плиты, древесноволокнистые плиты средней плотности, ориентированно-стружечные плиты и ламинированные напольные покрытия все основные источники этих выбросов формальдегида.

В результате многие столяры и потребители начали искать древесностружечные плиты «без добавления формальдегида». Следует отметить, что эти новые доски без формальдегида широко не использовались по состоянию на 2015 год. Это означает, что большая часть мебели в вашем доме и доме ваших родителей, включая кухонные шкафы, где вы храните продукты, могут иметь следы формальдегида. . 

Продолжение статьи под рекламой

Может ли ДСП вызвать у меня тошноту?

Вероятно, многие читатели пользуются одними и теми же напольными покрытиями и мебелью из ДСП более 30 лет. Это и позор, и проблема безопасности, потому что есть доказательства того, что большая часть нашей любимой винтажной мебели «выделяет» токсины в воздух, особенно если она сделана из ДСП. Однако есть что-то вроде серебряной подкладки.

Хорошей новостью является то, что чем старше мебель из ДСП, тем больше вероятность того, что она уже выделила из себя весь формальдегид. Плохая новость заключается в том, что это означает, что вы вдыхали эти вещества десятилетиями. По данным Центра по контролю и профилактике заболеваний США, формальдегид вызывает болезни. Он даже был связан с повышенным риском аллергии и астмы у детей и, как канцероген, с раком.

Продолжение статьи ниже рекламного объявления

Источник: iStock

Существуют ли альтернативы ДСП?

К счастью, сегодня производится несколько новых «неформальдегидных» версий материала. Uniboard является одним из них, так как бренд не использует формальдегид для связывания древесной массы. Ищите устойчивые альтернативы древесностружечным плитам, такие как биокомпозитные плиты и PrimeBoard на основе пшеничной соломы. Все они экологичны и не содержат полиуретана. И, конечно же, вы всегда можете выбрать мебель из дерева, а не из ДСП.

Эта статья, первоначально опубликованная 5 ноября 2020 г., была обновлена.

Реклама

Еще из Green Matters

Последние новости Что такое устойчивая жизнь? Новости и обновления

    Реклама

    Огнестойкая ДСП | Древесные панели FR

    P2 Мебельная древесно-стружечная плита, обработанная огнеупорными фосфатными солями в соответствии с Евроклассом B.

    ДСП, специально разработанные для предотвращения распространения пламени по поверхности и предотвращения воспламенения. ДСП Spano Antivlam сохраняет свою механическую прочность и целостность после пожара.

    Этот продукт подходит для внутренних ненесущих работ, где вероятность намокания минимальна.

    Типичные области применения

    • Мебель
    • Заготовки для дверей
    • Обшивка стен
    • Шпонирование
    • Ламинирование
    • Общие столярные изделия
    • Магазинное оборудование
    • Барное оборудование

    Применимые стандарты

    • BS EN 312 – ДСП технические характеристики
    • BS EN 309– ДСП: определение и классификация
    • EN ISO 11925 – Испытание на воспламеняемость.
    • BS EN 13501-1 – Испытание одного предмета на возгорание
    • Европейский класс огнестойкости B/C

    Окружающая среда

    Компания Hanson Plywood получает свою коллекцию огнестойких древесно-стружечных плит из сертифицированных PEFC™ лесных концессий. Надежная система управления цепочкой поставок компании гарантирует, что сертификация соблюдается и соблюдается на протяжении всей цепочки поставок. Дополнительную информацию см. на нашей странице окружающей среды.

    Древесно-стружечная плита обычно изготавливается примерно на 65-70% из переработанного материала и подлежит дальнейшей переработке в конце своего жизненного цикла.

    Файлы для загрузки и ссылки

    Краткое справочное руководство – классы огнестойкости

    Обычно мы получаем запрос на панель с классом огнестойкости 1 час или ½ часа.

    30 или 60 минут относится к концепции огнестойкости и обычно относится к способности фасада или двери выдерживать прохождение полностью развившегося огня в течение указанного периода времени.

    Еврокласс относится к концепции Реакции на огонь и фокусируется на начальной стадии развития пожара. Панель с рейтингом Еврокласса может быть частью системы противопожарных барьеров, требующей общей огнестойкости 30 или 60 минут.

    Дсп горючесть: классификация и примеры строительных материалов с разными группами горючести

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *