Схемы стабилизаторов напряжения 220 вольт: схема + инструктаж по сборке

Схемы стабилизаторов напряжения электронного, релейного и электромеханического типа

Автор: Александр Старченко 0 комментариев

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Содержание:

  1. Виды стабилизаторов напряжения
    • Электромеханический стабилизатор
    • Релейный стабилизатор
    • Электронный стабилизатор
    • Стабилизатор двойного преобразования

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую  скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования, в отличие  от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.

 

В основе работы электромеханического стабилизатора лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.

Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.

При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.

Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.

 

В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью  реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых  имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.

Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. Стабилизаторы релейного типа имеют самую низкую цену среди этих приборов.

Пример схемы релейного стабилизатора

Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

 

Принцип работы электронного стабилизатора не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует  трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.

Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет. ру.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.

На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.

Понравилась статья? Сохрани в соц сетях!

Сетевой стабилизатор напряжения | Микросхема

Поводом для публикации статьи про сетевые стабилизаторы напряжения послужил комментарий одного из наших уважаемых радиолюбителей в заметке про мощные стабилизаторы напряжения, обеспечивающие ток нагрузки до 3 ампер.

Здесь рассмотрим именно сетевые стабилизаторы напряжения бытового назначения, т.е. которые обеспечивают на выходе стандартное для многих стран (хотя далеко не всегда оно таковое – прим. AndReas) потребительское напряжение 220 вольт. Так вот, при девиации сетевого напряжения на входе такого стабилизатора они призваны приводить его к номиналу 220 вольт на выходе. Таким образом, обеспечивается стабильное и бесперебойное питание бытовых приборов или оргтехники, что способствует значительному продлению срока эксплуатации бытовой техники.

Не буду загружать вас, уважаемые радиолюбители, теоретическим материалом, поскольку здесь и так все ясно. Схем различных сетевых стабилизаторов напряжения масса. Большинство из них также уже содержат фильтры от ВЧ помех и прочие «навороты». Но фирмы при покупке у них готового сетевого стабилизатора напряжения всегда «до кучи» пытаются «навалить» «левого», уже ненужного товара, например, сетевые фильтры. А цена на данные устройства порой доходит до абсурда.

Для начала небольшая ремарка. Если вы зашли на эту страничку, чтобы просто найти подходящий стабилизатор для себя, то можете поискать, например, здесь. Некоторые модели вполне заслуживают внимания.

Поскольку речь в комментарии зашла про сетевые стабилизаторы напряжения торговой марки Defender, то остановлюсь на них чуточку подробнее. Если изучить номенклатуру предлагаемых ими стабилизаторов, то в описании практически каждого устройства написано одно и то же назначение, а именно: предназначен для защиты электропитания бытовой аудио- и видеотехники, компьютеров, периферии и другой электронной аппаратуры от длительного повышения или понижения напряжения в сети, импульсных помех, а также для защиты от высокого напряжения.

Лично я для компьютера и другой маломощной цифровой электроники, вместо каких бы то ни было сетевых стабилизаторов, использую источник бесперебойного питания (или инвертор или преобразователь — кому как нравится). Вот это крайне полезное устройство во всех отношениях. Оно и от девиации напряжения спасает (кстати, в некоторые современные модели таких инверторов уже встроены стабилизаторы), и от его совершенного падения до нуля, да и от помех защищает.

А сетевые стабилизаторы напряжения не то чтобы необходимы, но рекомендованы приборам с электродвигателями и низкочастотными трансформаторами. А действительно необходимы они этим самым приборам за городом, на даче, т.е. там, где на выделенной вам электролинии напряжение много меньше даже 180 вольт.

Ну да ладно, лирику в сторону, продолжаем по существу. Как мне стало известно, в сетевых стабилизаторах напряжения Defender AVR применяется автотрансформаторная схема с цифровым управлением, а раньше использовалась схема с аналоговым управлением. Пример схемы с аналоговым управлением:

Более про бытовые стабилизаторы Defender никаких данных, к сожалению, найти не удалось. Вообще подобные фирмы неохотно раскрывают, так сказать, коммерческую тайну. Хотя, было бы что скрывать, если подобных разработок полно в общем доступе (прим. авт. AndReas). Но мы подготовили ещё несколько схем сетевых преобразователей напряжения. Не думаю, что все производители подобных устройств могут предложить что-то кардинально новое. Все их, так называемые, разработки основаны на общедоступных схемотехнических решениях. Вот один из них:

Сетевой стабилизатор напряжения, схема которого представлена чуть выше, включает последовательно с нагрузкой одну, две или три дополнительных обмотки трансформатора при девиации сетевого напряжения. Если сетевое напряжение ниже необходимого, то дополнительные обмотки включаются синфазно с сетью, и напряжение на нагрузке становится больше сетевого. Если напряжение сети становится выше нормы, то обмотки включаются в противофазе с сетевым напряжением, приводя к уменьшению напряжения на нагрузке. Трансформатор на схеме обозначен Т1, а дополнительные обмотки римскими цифрами IV, V, VI. Компараторы DA3…DA8 настроены на срабатывание в зависимости от уровней сетевого напряжения 250 В, 240 В, 230 В, 210 В, 200 В и 190 вольт соответственно. Если напряжение сети превышает указанные уровни, то на выходах (вывод 9) тех компараторов, для которых выполняется указанное условие, действует напряжение высокого логического уровня (логической 1), составляющее около 12 В. Таким образом, разница уровней срабатывания компараторов составляет 10 В, или примерно 5 % сетевого напряжения. Уровни срабатывания компараторов DA5 и DA6 отличаются на 20 вольт. Это соответствует зоне регулирования 220 В ± 5%. Следует заметить, что государственными стандартами установлено допустимое сетевое напряжение от 187 В до 242 В. Данный же стабилизатор, как видно, обеспечивает более высокую точность поддержания величины сетевого напряжения. Это можно отразить так:

Вместо указанных на схеме компараторов можно применить микросхему К1401СА1. В качестве стабилизаторов применены КР142ЕН8Б. Диодные мостики VD1 и VD2 можно заменить на КЦ402…КЦ405, КЦ409, КЦ410, КЦ412. VD4…VD7 – любые с допустимым обратным напряжением более 15 В и прямым током более 100 мА. Оксидные конденсаторы — К50-16, К50-29 или К50-35; остальные— КМ-6, К10-17, К73-17. Реле К1 — К5 — зарубежного производства Bestar BS-902CS. Реле этого типа имеют обмотку сопротивлением 150 Ом, рассчитанную на рабочее напряжение 12 В, и контактную группу переключающего типа, рассчитанную на коммутацию напряжения 240 В при токе 15 А. Трансформатор Т1 выполнен на магнитопроводе ШЛ50х40. Обмотка I намотана проводом ПЭВ-2 0,9 и содержит 300 витков; обмотка II —21 виток провода ПЭВ-2 0,45; обмотка III — 14 витков провода ПЭВ-2 0.45; обмотки IV, V, VI содержат по 14 витков провода ПБД 2.64. Удобно использовать стандартный трансформатор типа ОСМ1-0.63, у которого все обмотки, кроме первичной (она содержит 300 витков), удалены, а вторичные обмотки намотаны в соответствии с приведенными выше данными. При изготовлении трансформатора одноименные выводы обмоток I, IV, V, VI следует пометить (на схеме обозначены точками). Номинальная мощность такого трансформатора составляет 630 Вт. К данному сетевому стабилизатору напряжения можно подключить нагрузку до 3 киловатт. Если точность поддержания выходного напряжения нужна ниже, то число вторичных обмоток трансформатора Т2 можно снизить до двух, а их напряжение увеличить с 10 вольт до 15 вольт. При этом число компараторов также уменьшится, а пороги их срабатывания следует установить соответственно напряжениям вторичных обмоток Т2.

Настройка этого сетевого стабилизатора следующая:

Самыми простыми в схемотехническом отношении являются электромеханические сетевые стабилизаторы напряжения. Основными компонентами такого типа приборов являются автотрансформатор и электродвигатель, например, РД-09 со встроенным редуктором, который вращает движок автотрансформатора.

Все очень просто. Контроль сетевого напряжения осуществляет электронная схема, которая при его девиации подает сигналы электродвигателю на вращение ротора по часовой или против часовой стрелки. Вращаясь, ротор перемещает движок автотрансформатора, обеспечивая тем самым стабильное выходное напряжение. Вот несколько схем электромеханических сетевых стабилизаторов:

Ещё одной разновидностью сетевых стабилизаторов напряжения являются релейные. Они обеспечивают более высокую выходную мощность вплоть до нескольких киловатт. Мощность нагрузки даже может превосходить мощность самого трансформатора. При выборе мощности трансформатора учитывается минимально возможное напряжение в электрической сети. Если, например, минимальное напряжение сети не менее 180 вольт, то от трансформатора требуется вольтодобавка 40 вольт, т.е. в 5,5 раз меньше сетевого напряжения. Во столько же раз выходная мощность всего стабилизатора будет больше мощности силового трансформатора. Количество ступеней регулирования напряжения обычно не превышает 3…6, что обеспечивает достаточную точность поддержания выходного напряжения. Вот некоторые схемы стабилизаторов релейного типа:

Дополнительно можете ознакомиться со следующими схемами, описанием работы и конструкциями сетевых стабилизаторов напряжения:

Скачать схему сетевого стабилизатора на 6 киловатт

Скачать схему сетевого стабилизатора с микроконтроллерным управлением

Метки: полезно собрать

Радиолюбителей интересуют электрические схемы:

Стабилизатор сетевого напряжения
Мощный стабилизатор напряжения

Схема бестрансформаторного стабилизатора напряжения | Самодельные схемы

Вы здесь: Главная / Домашние электрические схемы / Бестрансформаторная схема стабилизатора напряжения идеально стабилизированное сетевое напряжение 220 В или 120 В на подключенной нагрузке без использования реле или трансформаторов, а за счет использования точно рассчитанных и саморегулирующихся импульсов ШИМ. Идея была запрошена мистером Мэтью.

Предупреждение. Цепи, описанные ниже, не изолированы от сети переменного тока, поэтому прикасаться к ним очень опасно, если они включены и разомкнуты. Вы должны быть предельно осторожны при построении и тестировании этих цепей и обязательно принять необходимые меры предосторожности. Автор не несет ответственности за какой-либо несчастный случай из-за какой-либо халатности пользователя

Технические характеристики

Об оптимизаторе мощности (стабилизаторе) Мне нужна простая печатная плата, которую можно установить в нашу силовую защиту (блок конденсаторов) с УЗИП и ELCB для 1ф и 3ф.

В настоящее время мы производим его без какой-либо электронной схемы. Поэтому мы планируем добавить одну печатную плату для оптимизатора мощности, чтобы сбалансировать падение напряжения или перенапряжение.

Наш продукт пользуется хорошим спросом, поэтому мы планируем представить нашу силовую защиту со стабилизатором напряжения для наших 1-фазных и 3-фазных блоков. В этом случае нам нужна очень простая и недорогая печатная плата для наших новых моделей.

Надеюсь, вы понимаете, что именно мне нужно. Как я уже говорил вам в своем предыдущем письме, если вы можете спроектировать печатную плату или поставить печатную плату с компонентами, это будет преимуществом, потому что в нашей стране компоненты очень трудно найти. Наша 1 фаза 220 В / 50 Гц с 12 кГц и 3 фазы / 415 В / 50 Гц 40 кГц

Жду вашего ответа в ближайшее время.

Пожалуйста, добавьте меня в Skype для любого обсуждения или в Viber , Whatsup Спасибо Мэтью

  Конструкция

Как и требовалось, стабилизатор сетевого напряжения должен быть компактным и предпочтительно бестрансформаторного типа. Поэтому схема на основе ШИМ выглядела как наиболее подходящий вариант для предлагаемого приложения.

Здесь переменный ток на входе сети сначала выпрямляется в постоянный, затем преобразуется в прямоугольный переменный ток, который, наконец, настраивается на правильный среднеквадратический уровень для получения требуемого стабилизированного выходного напряжения сети. Таким образом, в основном на выходе будет прямоугольная волна, но с правильным среднеквадратичным значением.

Соотношение Rt/Ct микросхемы IRS2453 должно быть правильно выбрано, чтобы получить частоту 50 Гц в сети H-моста.

Представленная схема ШИМ-стабилизатора сети в основном состоит из двух изолированных каскадов. Цепь левой стороны сконфигурирована вокруг специализированной полноволновой инверторной микросхемы Н-моста и связанных с ней мощных полевых МОП-транзисторов.

Чтобы узнать больше об этом простом, но очень сложном инверторе H-bridge, вы можете обратиться к этой статье под названием: «Схема простейшего мостового инвертора»

Как видно из диаграммы, здесь предполагаемая нагрузка размещается между левым и правым плечами мостового мосфета.

Правая схема, состоящая из пары каскадов 555 IC, образует каскад генератора ШИМ, в котором генерируемый ШИМ зависит от напряжения сети.

Здесь IC1 сконфигурирован для генерации сигналов прямоугольной формы с определенной заданной последовательной скоростью и подает сигнал на IC2 для преобразования этих прямоугольных сигналов в соответствующие треугольные волны.

Затем треугольные волны сравниваются с потенциалом на выводе № 5 микросхемы IC2, чтобы сгенерировать пропорционально соответствующий ШИМ-сигнал на выводе № 3.

Это означает, что потенциал на контакте № 5 можно регулировать и настраивать для получения любой желаемой скорости ШИМ.

Эта функция используется здесь путем присоединения сборки LDR/LED вместе с эмиттерным повторителем к выводу № 5 IC2.

Внутри сборки LED/LDR светодиод связан с входным напряжением сети таким образом, что его интенсивность пропорционально изменяется в зависимости от изменения напряжения сети.

Описанное выше действие, в свою очередь, создает пропорционально увеличивающиеся или уменьшающиеся значения сопротивления по сравнению с подключенным LDR.

Сопротивление LDR влияет на потенциал базы эмиттерного повторителя NPN, что соответственно изменяет потенциал на выводе № 5, но в обратном отношении, то есть при увеличении потенциала сети потенциал на выводе № 5 микросхемы 2 пропорционально тянут вниз и наоборот.

Когда это происходит, ШИМ на выводе №3 микросхемы сужается по мере увеличения сетевого потенциала и расширяется по мере уменьшения сетевого напряжения.

Эта автоматическая регулировка ШИМ подается на затворы MOSFET низкого напряжения H-моста, что, в свою очередь, обеспечивает правильную регулировку напряжения (RMS) на нагрузке с учетом колебаний сети.

Таким образом, сетевое напряжение становится идеально стабилизированным и поддерживается на достаточно правильном уровне без использования каких-либо реле или трансформаторов.

Примечание. Выпрямленное напряжение шины постоянного тока получается путем соответствующего выпрямления и фильтрации сетевого напряжения переменного тока, поэтому здесь напряжение может быть около 330 В постоянного тока

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits. com/, где я люблю делиться своими инновационными схемами и учебными пособиями.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать через комментарии, я буду очень рад помочь!

Автоматический стабилизатор напряжения от 5 до 10 кВА — 220 В, 120 В

0003

Искать на веб-сайте

Последнее обновление by Swagatam 86 комментариев

Стабилизатор напряжения в диапазоне кВА представляет собой мощный стабилизатор напряжения переменного тока, специально разработанный для контроля и стабилизации колебаний высокого напряжения для электрооборудования большой мощности. .

В этой статье мы обсуждаем простую в сборке 7-ступенчатую схему стабилизатора высокой мощности порядка 5000–1000 Вт, которую можно использовать для управления колебаниями напряжения в сети переменного тока и для получения очень точных стабилизированных выходных напряжений для наших бытовых электроприборов. .

Работа схемы

Предлагаемый точный 7-релейный стабилизатор напряжения сети, управляемый операционным усилителем. Концепция схемы довольно проста. Он использует дискретные операционные усилители, подключенные в качестве компараторов для измерения уровней напряжения.

Как видно на диаграмме, инвертирующие входы каждого операционного усилителя снабжены последовательно увеличивающимися опорными уровнями напряжения через серию предустановок, которые снижают определенное количество напряжения на самом себе.

Каждый операционный усилитель сравнивает это напряжение с общим уровнем сетевого переменного напряжения образца, подаваемым на неинвертирующие входы операционных усилителей.

Пока эта выборка напряжения ниже опорного уровня, соответствующие операционные усилители удерживают свои выходы на низком уровне, а последующие ступени транзисторных реле остаются неактивными, однако в случае, если уровни напряжения имеют тенденцию отклоняться от своего нормального диапазона, соответствующие реле срабатывают и переключают отводы трансформатора, так что выходной сигнал соответствующим образом выравнивается и корректируется.

Например, если входное переменное напряжение имеет тенденцию к падению, могут сработать верхние реле, соединяющие соответствующие отводы более высокого напряжения с выходом, и наоборот, если напряжение резко возрастет.

Здесь выходные соединения операционных усилителей гарантируют, что только одна оптопара и, следовательно, только одно реле активируется одновременно.

Перечень деталей

  • P1—P8 = 10 кОм предустановка,
  • A1—A8 = IC 324 (2 №)
  • R1—R8 = 1 кОм,
  • 9012 ,
  • Все реле = 12 В, 400 Ом, SPDT,
  • Все оптопары = MCT2E или эквивалентные,

Трансформатор = Розовый Отвод — отвод нормального напряжения, верхние отводы — в порядке убывания 25 В, а нижние отводы находятся в порядке возрастания 25 вольт.

Полная принципиальная схема предлагаемого точного 7-каскадного стабилизатора сетевого напряжения, управляемого операционным усилителем.

IC LM324 Распиновка деталей

 

Принципиальная схема

Модернизация твердотельной версии с использованием SSR

На приведенной ниже схеме показана довольно простая конструкция стабилизатора напряжения, который может поддерживать огромную выходную мощность в диапазоне от 5 до 10 кВА. Использование твердотельных реле или твердотельных реле упрощает настройку выходного каскада и делает его очень точным — благодаря современным твердотельным реле, которые предназначены для запуска большой мощности в ответ на меньшие входные потенциалы постоянного тока.

Схема  Описание

Предложенная схема простого автоматического стабилизатора напряжения большой емкости проста для понимания. Все операционные усилители расположены в стандартных режимах компаратора напряжения.

Предустановки от P1 до P7 можно настроить в соответствии с требуемыми точками срабатывания, которые будут соответствовать переключению выходного твердотельного реле и последующему выбору ответвлений трансформатора.

Центральный зеленый TAP представляет собой нормальное выходное напряжение, нижние TAP постепенно создают более высокие напряжения, а верхние TAP настроены на более низкие напряжения.

Эти TAP выбираются соответствующими твердотельными реле в зависимости от изменения напряжения переменного тока, таким образом регулируя выходное напряжение устройств, близкое к нормальному уровню.

Эта схема была запрошена г-ном Александром, и данные SSR были предоставлены им.

Список деталей

  • R1 до R9 = 1K, 1/4 ватта,
  • R10 = 10K 1/4 Ватта
  • P1 до P8 = 10K PRESET,
  • C1 = 1000UF/25V 9012 3
  • C1 = 1000UF/25V 9012 3
  • C1 = 1000UF/25V 9012 3
  • C1 = 1000UF/25V 9012
  • .
  • операционные усилители = IC 324,

Трансформатор = вход 230 вольт или 120 вольт, ответвители — увеличение/уменьшение уровней напряжения (TAP) в соответствии с индивидуальными спецификациями.

Твердотельное реле = 10 кВА/230 вольт = выход, от 5 до 32 вольт постоянного тока = вход Diagram

SSR Image
О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными схемами и учебными пособиями.

Схемы стабилизаторов напряжения 220 вольт: схема + инструктаж по сборке

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *