Обозначение светодиода на схеме по ГОСТу
Светодиодом принято называть полупроводниковый прибор, при подаче напряжения на который, происходит излучение света — как видимой, так и не видимой части светового диапазона. Международное обозначение светодиодов происходит от сокращения английских слов Light Emitting Diode — LED.
Для правильного определения светодиодов на электрических схемах, приняты единые графические и буквенные символы, которые позволяют унифицировать техническую работу со светодиодами и источниками света на их основе.
Графическое обозначение светодиода на схемах
Традиционным обозначением светодиодов, требования к графическому изображению которого устанавливает еще советский ГОСТ 2.730-73, выступает графический значок обычного диода, помещенный в кружок, и двумя стрелками. В отличие от фотодиода, который воспринимает излучение света, стрелки в обозначении светодиода на схемах направлены наружу, что указывает на его излучающую способность.
На схемах светодиод чаще обозначают без использования окружности – только в виде символа диода и двух исходящих стрелок.
Рабочая полярность подключения светодиода на схеме совпадает с его полупроводниковым предшественником — обычным диодом. Черточкой обозначает катод изделий, а треугольник — его анод.
Такое традиционное свойство обычного диода, как односторонняя проводимость, определяет и правило подключения светодиодов — они начинают светиться только при соблюдении прямой полярности подключаемого напряжения. Чтобы светодиод излучал свет, необходимо к катодному выводу подключить отрицательный полюс источника питания постоянного напряжения, а к аноду — положительный.Буквенное обозначение и особенности маркировки
Общепринятым обозначением светодиодов на принципиальных электрических схемах выступает латинская аббревиатура HL, что означает по ГОСТ 2.702-2011 — приборы световой сигнализации.
Единого стандарта для технической маркировки светодиодных изделий не существует, поэтому каждый производитель полупроводниковой техники использует свою собственную систему, в которой отображает технические параметры компонента из целого ряда возможных электрических и оптических характеристик:- серия светоизлучающего прибора;
- минимальный рабочий ток;
- кодированное обозначение цвета излучения;
- световой поток в люменах.
Также в маркировке могут зашифровываться индекс цветопередачи, тип оптической линзы, мощность в ваттах, цветовая температура и прямое падение напряжения в номинальном режиме работы.
ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ
ОБОЗНАЧЕНИЯ
УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ
ГОСТ 2.730-73
ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Единая система конструкторской документации ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ Unified system for design
documentation. |
ГОСТ |
Дата введения 1974-07-01
1. Настоящий стандарт устанавливает правила построения условных графических обозначений полупроводниковых приборов на схемах, выполняемых вручную или автоматическим способом во всех отраслях промышленности.
(Измененная редакция, Изм. № 3).
2. Обозначения элементов полупроводниковых приборов приведены в табл. 1.
Таблица 1
Наименование |
Обозначение |
1. (Исключен, Изм. № 2). |
|
2. Электроды: |
|
база с одним выводом |
|
база с двумя выводами |
|
Р -эмиттер с N -областью |
|
N -эмиттер с Р-областью |
|
несколько Р |
|
несколько N -эмиттеров с Р-областью |
|
коллектор с базой |
|
несколько коллекторов, например, четыре коллектора на базе |
|
3. Области: область между проводниковыми слоями с различной электропроводностью. Переход от Р-области к N -области и наоборот |
|
область собственной электропроводности ( I -область): l) между областями с электропроводностью разного типа PIN или NIP |
|
2) между областями с электропроводностью одного типа PIP или NIN |
|
3) между коллектором и областью с противоположной электропроводностью PIN или NIP |
|
4) между коллектором и областью с электропроводностью того же типа |
|
4. Канал проводимости для полевых транзисторов: обогащенного типа |
|
обедненного типа |
|
5. Переход PN |
|
6. Переход NP |
|
7. Р-канал на подложке N -типа, обогащенный тип |
|
8. N -канал на подложке Р-типа, обедненный тип |
|
9. Затвор изолированный |
|
10. Исток и сток Примечание . Линия истока должна быть изображена на продолжении линии затвора, например: |
|
11. Выводы полупроводниковых приборов: |
|
электрически, не соединенные с корпусом |
|
электрически соединенные с корпусом |
|
12. Вывод корпуса внешний. Допускается в месте присоединения к корпусу помещать точку |
(Измененная редакция, Изм. № 2, 3).
3, 4. (Исключены, Изм. № 1).
5. Знаки, характеризующие физические свойства полупроводниковых приборов, приведены в табл.4.
Таблица 4
Наименование |
Обозначение |
1. Эффект туннельный |
|
а) прямой |
|
б) обращенный |
|
2. Эффект лавинного пробоя: а) односторонний |
|
б) двухсторонний 3-8. (Исключены, Изм. № 2). |
|
9. Эффект Шоттки |
6. Примеры построения обозначений полупроводниковых диодов приведены в табл. 5.
Таблица 5
Наименование |
Обозначение |
1. Диод |
|
Общее обозначение |
|
2. Диод туннельный |
|
3. Диод обращенный |
|
4. Стабилитрон (диод лавинный выпрямительный) |
|
а) односторонний |
|
б) двухсторонний |
|
5. Диод теплоэлектрический |
|
6. Варикап (диод емкостный) |
|
7. Диод двунаправленный |
|
8. Модуль с несколькими (например, тремя) одинаковыми диодами с общим анодным и самостоятельными катодными выводами |
|
8a. Модуль с несколькими одинаковыми диодами с общим катодным и самостоятельными анодными выводами |
|
9. Диод Шотки |
|
10. Диод светоизлучающий |
7. Обозначения тиристоров приведены в табл. 6.
Таблица 6
Наименование |
Обозначение |
1. Тиристор диодный, запираемый в обратном направлении |
|
2. Тиристор диодный, проводящий в обратном направлении |
|
3. Тиристор диодный симметричный |
|
4. Тиристор триодный. Общее обозначение |
|
5. Тиристор триодный, запираемый в обратном направлении с управлением: по аноду |
|
по катоду |
|
6. Тиристор триодный выключаемый: общее обозначение |
|
запираемый в обратном направлении, с управлением по аноду |
|
запираемый в обратном направлении, с управлением по катоду |
|
7. Тиристор триодный, проводящий в обратном направлении: |
|
общее обозначение |
|
с управлением по аноду |
|
с управлением по катоду |
|
8. Тиристор триодный симметричный (двунаправленный) — триак |
|
9. Тиристор тетроидный, запираемый в обратном направлении |
Примечание. Допускается обозначение тиристора с управлением по аноду изображать в виде продолжения соответствующей стороны треугольника.
8. Примеры построения обозначений транзисторов с Р- N -переходами приведены в табл. 7.
Таблица 7
Наименование |
Обозначение |
1. Транзистор а) типа PNP |
|
б) типа NPN с выводом от внутреннего экрана |
|
2. Транзистор типа NPN, коллектор соединен с корпусом |
|
3. Транзистор лавинный типа NPN |
|
4. Транзистор однопереходный с N-базой |
|
5. Транзистор однопереходный с Р-базой |
|
6. Транзистор двухбазовый типа NPN |
|
7. Транзистор двухбазовый типа PNIP с выводом от i-области |
|
8. Транзистор двухразовый типа P NIN с выводом от I -области |
|
9. Транзистор многоэмиттерный типа NPN |
|
Примечание. При выполнении схем допускается: а) выполнять обозначения транзисторов в зеркальном изображении, например, б) изображать корпус транзистора. |
Таблица 8
Наименование |
Обозначение |
1. Транзистор полевой с каналом типа N |
|
2. Транзистор полевой с каналом типа Р |
|
3. Транзистор полевой с изолированным затвором баз вывода от подложки: |
|
а) обогащенного типа с Р-каналом |
|
б) обогащенного типа с N-каналом |
|
в) обедненного типа с Р-каналом |
|
г) обедненного типа с N-каналом |
|
4. Транзистор полевой с изолированным затвором обогащенного типа с N-каналом, с внутренним соединением истока и подложки |
|
5. Транзистор полевой с изолированным затвором с выводом от подложки обогащенного типа с Р-каналом |
|
6. Транзистор полевой с двумя изолированными затворами обедненного типа с Р-каналом с выводом от подложки |
|
7. Транзистор полевой с затвором Шоттки |
|
8. Транзистор полевой с двумя затворами Шоттки |
Примечание . Допускается изображать корпус транзисторов.
10. Примеры построений обозначений фоточувствительных и излучающих полупроводниковых приборов приведены в табл. 9.
Таблица 9
Наименование |
Обозначение |
1. Фоторезистор: а) общее обозначение |
|
б) дифференциальный |
|
2. Фотодиод |
|
З. Фототиристор |
|
4. Фототранзистор: |
|
а) типа PNP |
|
б) типа NPN |
|
5. Фотоэлемент |
|
6. Фотобатарея |
Таблица 10
Наименование |
Обозначение |
1. Оптрон диодный |
|
2. Оптрон тиристорный |
|
3. Оптрон резисторный |
|
4. Прибор оптоэлектронный с фотодиодом и усилителем: |
|
а) совмещенно |
|
б) разнесенно |
|
5. Прибор оптоэлектронный с фототранзистором: а) с выводом от базы |
|
б) без вывода от базы |
Примечания:
1. Допускается изображать оптоэлектронные приборы разнесенным способом. При этом знак оптического взаимодействия должен быть заменен знаками оптического излучения и поглощения по ГОСТ 2.721-74,
например:
2. Взаимная ориентация обозначений источника и приемника не устанавливается, а определяется удобством вычерчивания схемы, например:
12. Примеры построения обозначений прочих полупроводниковых приборов приведены в табл. 11.
Таблица 11
Наименование |
Обозначение |
1. Датчик Холла |
|
Токовые выводы датчика изображены линиями, отходящими от коротких сторон прямоугольника |
|
2. Резистор магниточувствительный |
|
3. Магнитный разветвитель |
13. Примеры изображения типовых схем на полупроводниковых диодах приведены в табл. 12.
Таблица 12
Наименование |
Обозначение |
1. Однофазная мостовая выпрямительная схема: |
|
а) развернутое изображение |
|
б) упрощенное изображение (условное графическое обозначение) Примечание. К выводам 1-2 подключается напряжение переменного тока; выводы 3-4 — выпрямленное напряжение; вывод 3 имеет положительную полярность. Цифры 1, 2, 3 и 4 указаны для пояснения. |
|
Пример применения условного графического обозначения на схеме |
|
2. Трехфазная мостовая выпрямительная схема |
|
3. Диодная матрица (фрагмент) |
|
Примечание. Если все диоды в узлах матрицы включены идентично, то допускается применять упрощенный способ изображения. При этом на схеме должны быть приведены пояснения о способе включения диодов |
14. Условные графические обозначения полупроводниковых приборов для схем, выполнение которых при помощи печатающих устройств ЭВМ предусмотрено стандартами Единой системы конструкторской документации, приведены в табл. 13.
Таблица 13
Наименование |
Обозначение |
Отпечатанное обозначение |
1. Диод |
||
2. Транзистор типа PNР |
||
3. Транзистор типа NPN |
||
4. Транзистор типа PNIP с выводом от I -области |
||
5. Многоэмиттерный транзистор типа NPN |
Примечание к пп. 2-5. Звездочкой отмечают вывод базы, знаком «больше» или «меньше» — вывод эмиттера.
15. Размеры (в модульной сетке) основных условных графических обозначений даны в приложении 2.
(Измененная редакция, Изм. № 4).
Приложение 1. (Исключено, Изм. № 4).
Наименование |
Обозначение |
1. Диод |
|
2.. Тиристор диодный |
|
3. Тиристор триодный |
|
4. Транзистор 5. Транзистор полевой |
|
6. Транзистор полевой с изолированным затвором |
(Введено дополнительно, Изм. № 3).
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1 РАЗРАБОТАН И ВНЕСЕН Государственным комитетом стандартов Совета Министров СССР
РАЗРАБОТЧИКИ
В. Р. Верченко, Ю. И. Степанов, Э. Я. Акопян, Ю. П. Широкий, В. П. Пармешин, И. К. Виноградова
2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 16.08.73 № 2002
3 Соответствует СТ СЭВ 661-88
4 ВЗАМЕН ГОСТ 2.730-68, ГОСТ 2.747-68 в части пп. 33 и 34 таблицы
5 ПЕРЕИЗДАНИЕ (январь 1995 г.) с Изменениями № 1, 2, 3, 4, утвержденными в июле 1980 г., апреле 1987 г., марте 1989 г., июле 1991 г. (ИУС 10-80, 7-87, 6-89, 10-91)
Диод — Виды, характеристики, параметры диодов
Что такое диод
Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.
обратный клапан
Диод – это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:
А некоторые выглядят чуточку по-другому:
Есть также и SMD исполнение диодов:
Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.
На схемах диод обозначается так
Он может пропускать электрический ток только от анода к катоду.
Из чего состоит диод
В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.
После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.
Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.
строение диодаПолупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.
Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.
диод Д226
Вот это и есть тот самый PN-переход
PN-переход диодаКак определить анод и катод диода
1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса
2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.
Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).
Диод в цепи постоянного тока
Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.
прямое включение диодаТак как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.
диод в прямом включении
Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.
обратное включение диода
Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.
обратное включение диода
Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.
Диод в цепи переменного тока
Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.
Мой генератор частоты выглядит вот так.
генератор частотОсциллограмму будем снимать с помощью цифрового осциллографа
Генератор выдает переменное синусоидальное напряжение.
синусоидальный сигнал
Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.
переменное напряжение после диода
Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.
А что будет, если мы поменяем выводы диода? Схема примет такой вид.
переменый ток после диода
Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.
переменный ток после диодаНичего себе! Диод срезал только положительную часть синусоиды!
[quads id=1]
Характеристики диода
Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”
Для объяснения параметров диода, нам также потребуется его ВАХ
1) Обратное максимальное напряжение Uобр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.
2) Максимальный прямой ток Iпр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.
3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.
Виды диодов
Стабилитроны
Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.
Выглядят стабилитроны точно также, как и обычные диоды:
На схемах обозначаются вот так:
Светодиоды
Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.
Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.
Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.
Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.
На схемах светодиоды обозначаются так:
Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления
Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах
Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:
Как проверить светодиод можно узнать из этой статьи.
Тиристоры
Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.
а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:
На схемах триодные тиристоры выглядят вот таким образом:
Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.
Диодный мост и диодные сборки
Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты – одна из разновидностей диодных сборок.
На схемах диодный мост обозначается вот так:
Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.
Приобрести диоды можно тут.
Очень интересное видео про диод
Похожие статьи по теме “диод”
Как работает стабилитрон
Диод Шоттки
Диодный мост
Как проверить диод и светодиод мультиметром
Как проверить тиристор
Схема для проверки тиристоров
ЕСКД. Обозначения условные графические в схемах. Компоненты волоконно-оптических систем передачи / ЕСКД. Единая система конструкторской документации / Законодательство
ГОСТ 2.761-84
УДК 003.62:621.3062:006.354
Группа Т52
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
Единая система конструкторской документации
ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ.
КОМПОНЕНТЫ ВОЛОКОННО-ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ
Unified system for design documentation.
Graphic designations in diagrams. Optical fibre data transmission systems components
ОКСТУ 0002
Дата введения 01.07.85
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. РАЗРАБОТЧИКИ
В.А. Бирюков, Н.М. Дмитриева, С.П. Корнеева, В.В. Мукосеев, И.Н. Сидоров, А.А. Суворова
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 29.06.84 № 2253
3. Стандарт соответствует СТ СЭВ 5049-85
4. ВВЕДЕН ВПЕРВЫЕ
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка | Номер пункта |
ГОСТ 2.721-74 | 2, табл. 1 (пункты 1, 3, 6, 7) |
6. ИЗДАНИЕ (октябрь 2000 г.) с Изменениями № 1, 2, 3, утвержденными в октябре 1986г., апреле 1987 г., июле 1991 г., (ИУС 1-87, 7-87, 10-91)
1. Настоящий стандарт устанавливает условные графические обозначения компонентов и элементов волоконно-оптических систем передачи на схемах, выполняемых вручную или автоматизированным способом, во всех отраслях промышленности.
(Измененная редакция, Изм. № 1).
2. Знаки, характеризующие электронно-оптические и фотоэлектрические эффекты, приведены в табл. 1.
Таблица 1
Наименование | Обозначение |
1. Эффект оптического излучения | По ГОСТ 2.721 |
2. Эффект оптического когерентного излучения | |
3. Эффект фотоэлектрический | По ГОСТ 2.721 |
4. Совмещение эффекта оптического излучения с фотоэлектрическим эффектом | |
5. Эффект распространения оптического излучения | |
6. Эффект лавинного пробоя (односторонний и двухсторонний) | По ГОСТ 2.721 |
7. Взаимодействие оптическое | По ГОСТ 2.721 |
Примечание. Изображение эффектов применяют для образования условных графических обозначений элементов аппаратуры волоконно-оптических систем передачи (см. табл. 4). |
(Измененная редакция, Изм. № 1, 2).
3. Знаки, характеризующие типы оптических волноводов и соединение пучков оптических волокон, приведены в табл. 2.
Таблица 2
Наименование | Обозначение |
1. Оптический волновод, оптическая линия, оптическое волокно, волоконный световод, оптический кабель. Общее обозначение. | |
Примечания: 1. В обозначение включают дополнительную информацию о диаметре отдельных слоев оптического волокна в направлении от центра волокна: а — сердцевина b — оболочка с — первичная защита d — вторичная защита n — количество оптических волноводов в кабеле Допускается при наличии дополнительной информации указывать (n) над обозначением волновода без наклонной черты | |
2. При обозначении оптических линий окружность с двумя стрелками можно опустить, если исключена возможность ошибки. | |
2. Одномодовый оптический волновод, одномодовое оптическое волокно | |
3. Многомодовый оптический волновод, многомодовое оптическое волокно со ступенчатым профилем показателя преломления | |
с градиентным профилем показателя преломления | |
4. Оптический волновод с применением когерентного излучения | |
5. Слияние оптических волокон | |
6. Разветвление оптических волокон Примечание к пп. 5 и 6. Соотношение оптических мощностей приводят в процентах или в децибелах. |
4. Условные графические обозначения элементов, компонентов и устройств волоконно-оптических систем передачи приведены в табл. 3.
Таблица 3
Наименование | Обозначение |
1. Розетка оптического соединителя | |
2. Вилка оптического соединителя | |
3. Оптический разъемный соединитель | |
4. Оптический неразъемный соединитель | |
5. Оптический соединитель «вилка – розетка — вилка» | |
6. Оптический соединитель «розетка-вилка» | |
7. Оптический соединитель «розетка – вилка — розетка» | |
8. Оптический комбинированный соединитель | |
9. Оптический переключатель | |
10. Соединительная разъемная муфта | |
11. Соединительная неразъемная муфта | |
12. Оптический ответвитель Примечание. Допускается на линиях выводов указывать коэффициент ответвления по каждому выходному каналу в децибелах или процентах | |
13. Ответвитель типа «звезда» | |
14. Оптический пассивный разветвитель: (n — количество входов, m — количество выходов) | |
15. Оптический активный разветвитель: (n — количество входов, m — количество выходов) | |
16. Передающий оптоэлектронный модуль с диодом светоизлучающим с лазерным диодом | |
с диодом светоизлучающим | |
с лазерным диодом | |
17. Приемный оптоэлектронный модуль | |
с фотодиодом | |
с лавинным фотодиодом | |
18. Приемно-передающий оптоэлектронный модуль | |
19. Электрооптический модулятор | |
20. Оптический коммутатор: (n — количество входов, m — количество выходов) | |
21. Оптический аттенюатор | |
22. Смеситель мод | |
23. Делитель мод (полупрозрачное зеркало) | |
24. Удалитель мод оболочки |
5. Примеры соединений условных графических обозначений элементов и компонентов в схемах волоконно-оптических систем передачи приведены в табл. 4.
Таблица 4
Наименование | Обозначение |
1. Диод светоизлучающий с выводом многомодового оптического волокна со ступенчатым профилем показателя преломления | |
2. Фотодиод лавинный с розеткой оптического соединителя | |
3. Лазер полупроводниковый с соединителем оптическим разъемным | |
4. Кабель оптический, содержащий 20 многомодовых оптических волокон со ступенчатым профилем показателя преломления с диаметром сердцевины 50 мкм и диаметром оболочки 125 мкм | |
5. Приемно-передающий оптоэлектронный модуль с розеткой оптического соединителя | |
6. Кабель оптический комбинированный с комбинированным оптическим соединителем | |
7. Передающий оптоэлектронный модуль со светодиодом с оптическим ответвителем |
4, 5. (Измененная редакция, Изм. № 3).
6. Основные размеры условных графических обозначений элементов и компонентов волоконно-оптических систем передачи приведены в табл. 5.
Таблица 5
Наименование | Обозначение |
1. Оптическое волокно | |
2. Розетка оптического соединителя | |
3. Вилка оптического соединителя | |
4. Соединитель оптический разъемный | |
5. Соединитель световодный проходной | |
6. Муфта соединительная разъемная | |
7. Соединитель оптический комбинированный | |
8. Ответвитель оптический | |
9. Оптический разветвитель активный | |
10. Оптоэлектронный передающий модуль со светодиодом | |
11. Модуль приемно-передающий | |
12. Модулятор электрооптический | |
13. Показатель преломления ступенчатого профиля | |
14. Показатель преломления градиентного профиля | |
15. Одномодовое оптическое волокно |
3-6. (Измененная редакция, Изм. № 1).
ПРИЛОЖЕНИЕ
Справочное
ИНФОРМАЦИОННО-СПРАВОЧНЫЕ ДАННЫЕ О СООТВЕТСТВИИ
ГОСТ 2.761-84 СТ СЭВ 5049-85
ГОСТ 2.761-84 | СТ СЭВ 5049-85 | ГОСТ 2.761-84 | СТ СЭВ 5049-85 |
Табл. 2, п. 1 | Табл. 1, п. 1 | Табл. 3, п. 13 | Табл. 3, п. 8 |
п. 2 | п. 4 | п. 16 | Табл. 4, пп. 1, 2 |
п. 3 | пп. 3, 5 | п. 17 | пп. 3, 4 |
п. 4 | п. 2 | п. 21 | Табл. 3, п. 9 |
п. 5 | Табл. 2, п. 1 | п. 22 | п. 10 |
п. 6 | п. 2 | п. 23 | п. 11 |
Табл. 3, п. 1 | Табл. 3, п. 2 | п. 24 | п. 12 |
п. 2 | п. 3 | Табл. 4, п. 1 | Табл. 1, п. 3 |
п. 3 | п. 1 | п. 2 | Табл. 3, п. 2 |
п. 5 | п. 6 | п. 3 | Табл. 3, п. 1 |
п. 6 | п. 4 | п. 4 | Табл. 6, п. 1 |
п. 7 | п. 5 | п. 5 | Табл. 3, п. 2 |
п. 9 | п. 7 | п. 6 | Табл. 6, п. 2 |
п. 10 | Табл. 2, п. 4 | ||
п. 11 | п. 3 |
(Введено дополнительно, Изм. № 1).
Радио для всех — Условные обозначения диодов
Как известно, основное свойство p-n перехода — односторонняя проводимость: от области р (анод) к области n (катод). Это наглядно передает и условное графическое обозначение полупроводникового диода: треугольник (символ анода) вместе с пересекающей его линией электрической связи образуют подобие стрелки, указывающей направление проводимости. Перпендикулярная этой стрелке черточка символизирует катод. Буквенный код диодов — VD. Этим кодом обозначают не только отдельные диоды, но и целые группы, например, выпрямительные столбы. Исключение составляет однофазный выпрямительный мост, изображаемый в виде квадрата с соответствующим числом выводов и символом диода внутри. Полярность выпрямленного мостом напряжения на схемах не указывают, так как ее однозначно определяет символ диода. Однофазные мосты, конструктивно объединенные в одном корпусе, изображают отдельно, показывая принадлежность к одному изделию в позиционном обозначении.
Обозначение Реальный вид
Чтобы показать на схеме стабилитрон, катод дополняют коротким штрихом, направленным в сторону символа анода. Расположение штриха относительно символа анода должно быть неизменным независимо от положения УГО стабилитрона на схеме. Аналогично построены условные графические обозначения туннельных диодов, обращенных и диодов Шотки — полупроводниковых приборов, используемых для обработки сигналов в области СВЧ. В символе туннельного диода катод дополнен двумя штрихами, направленными в одну сторону (к аноду), в УГО диода Шотки — в разные стороны.
Обозначение Реальный вид
У варикапа две параллельные линии воспринимаются как символ конденсатора. Как и конденсаторы переменной ёмкости (для удобства) варикапы часто изготовляют в виде блоков (их называют матрицами) с общим катодом и раздельными анодами.
Обозначение Реальный вид
Базовый символ диода использован и в УГО тиристоров. Буквенный код этих приборов — VS.
Динистор обозначают символом диода, перечеркнутым отрезком линии, параллельной катоду. Такой же прием использован и при построении УГО симметричного динистора. Управление по катоду в тринисторах показывают ломаной линией, присоединенной к символу катода, по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод. Графическое обозначение симметричного (двунаправленного) тринистора получают из символа симметричного динистора добавлением третьего вывода.
Из диодов, изменяющих свои параметры под действием внешних факторов, наиболее широко применяют фотодиоды. Для обозначения фотодиодов, базовый символ диода помещают в кружок, а рядом с ним (слева вверху) помещают знак — две наклонные параллельные стрелки, направленные в сторону символа.Аналогично строятся условные графические обозначения светоизлучающих диодов, но стрелки, обозначающие оптическое излучение, помещают справа вверху, независимо от положения условно-графического обозначения и направляют в противоположную сторону.
Обозначение Реальный вид
На схемах оптроны обозначают буквой U. Оптическую связь излучателя (светодиода) и фотоприёмника показывают в этом случае двумя стрелками, перпендикулярными к линиям электрической связи — выводам оптрона. Фотоприемником в оптроне могут быть фотодиод, фототиристор, фоторезистор и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется. При необходимости составные части оптрона можно изображать раздельно, но в этом случае знак оптической связи следует заменять знаками оптического излучения и фотоэффекта, а принадлежность частей к одному изделию показывать в позиционном обозначении.
Обычно светодиоды, излучающие видимый свет, применяют в качестве индикаторов, на схемах их обозначают латинскими буквами HL (HG- для знаковых). Условные графические обозначения подобных устройств в ГОСТе и стандарте формально не предусмотрены. Сегменты подобных индикаторов обозначаются строчными буквами латинского алфавита по часовой стрелке, начиная с верхнего. Этот символ наглядно отражает практически реальное расположение светоизлучающих элементов (сегментов) в индикаторе, хотя и не лишен недостатка; он не несет информации о полярности включения в электрическую цепь (поскольку подобные индикаторы выпускают как с общим анодом, так и с общим катодом, то схемы включения будут различаться). Однако особых затруднений это не вызывает, поскольку подключение общего вывода индикаторов обычно указывают на схеме. Стандартный буквенный код D используют только для инфракрасных (ИК) светодиодов.
Обозначение Реальный вид
Светодиодные матрицы, светодиоды нового поколения, в которых применяются светодиодные кристаллы. Отображают небольшую сетку пикселей, значения которых определяются текущими значениями на входах. Сетка может иметь до 32 строк и 32 столбцов. Обозначение и подключение как у обычных светодиодов.
Условное обозначение светодиода на схеме
Интересно наблюдать, с какой поразительной скоростью сменяют друг друга технологии. Лет тридцать назад мы вполне были довольны электроникой, которой пользовались, простыми автомобилями, где-то неудобными и малоскоростными, скромными домами без евроремонта. Но так устроен человек, что постоянно стремится к чему-то более совершенному, и сейчас практически любая сфера жизни подвержена постоянной модернизации. Коснулся этот процесс также систем индикации и освещения. Так, на смену лампам накаливания пришли более совершенные полупроводниковые элементы – светодиоды.
Излучающий кристалл
История применения полупроводников старше начала использования ламп электронного типа. Попов А.С., который считается изобретателем радио, искал с помощью нехитрого полупроводникового устройства наличие радиоволн. Первый диод Попова (детектор) был изготовлен из полупроводникового кристалла, зафиксированного в держателе, и пружинного заостренного контакта из вольфрама или стали. Этот контакт опирался на площадь полупроводника, и в зависимости от точки соприкосновения можно было найти наиболее четкий сигнал радиостанции.
Способность некоторых кристаллов излучать свет под действием тока была обнаружена чуть позже, случайно, но в первое время не использовалась на практике. Теперь же светодиоды широко применяют и в спецтехнике, и в быту.
Что такое светодиод, как он выглядит на схеме?
Светодиодом называется разновидность полупроводникового элемента, имеющего особенность кристалла излучать свет под действием проходящего сквозь него электрического тока. Этот эффект проявляется не у всех полупроводников, а лишь у тех, у которых в процессе рекомбинации электронов и дырок выделение энергии происходит в световом диапазоне. Светодиод, как и обычный диод, имеет p-n-переход и пропускает ток только в одном направлении.
Особенностью светодиода как светоизлучающего прибора является то, что в нем непосредственно происходит выделение квантов света. Это отличает его от ламп накаливания, где сначала происходит разогрев спирали до определенной температуры, или галогенных ламп с эффектом ионизации. Потери энергии в светодиодах минимальны.
Конструктивно в состав светодиода входят подложка с нанесенным на нее кристаллом, выводы для подключения в электрическую цепь и корпус, который одновременно является оптической системой. Обозначение светодиода на схеме имеет определенное графическое выражение, на электронной плате он обозначается специальной кодировкой.
Для чего служит светодиод, и как это отражено в его изображении на схеме?
Светодиод излучает свет, в этом его назначение. И на схематическом изображении это четко обозначено двумя стрелочками, идущими от элемента. Применение устройство получило очень широкое:
- Различная индикация. Для сигнализации включения тех или иных режимов работы электронных устройств используют отдельные элементы. Группы устройств применяют в цифровой индикации, где каждый светодиод играет роль сегмента цифры или буквы. Условное обозначение светодиода на схеме, входящего в группу, не ставится отдельно для каждого, а отображается вся группа в виде индикатора с ответвлением и нумерацией контактов.
- Для бытового, общественного и промышленного освещения.
- В составе экранов для уличного транслирования, а также при создании бегущих строк.
- В оптопарах. Обозначение светодиода на схеме в этом случае дополняется изображением фотоприемного элемента.
- Оптоволоконные системы. Здесь светодиоды выступают в качестве излучателей модулированной оптической волны.
- Для подсветки экранов на жидких кристаллах.
- Дизайн и развлекательная индустрия.
Особенности обозначения полупроводника на чертежах
Технические нормы и правила регламентируют обозначение светодиода на схеме. ГОСТ 2.702-2011 предписывает:
- Изображать светодиод и другие элементы схемы при помощи чертежных принадлежностей либо в электронном виде. При этом последний вариант должен иметь разрешение не меньше 300dpi и содержать расширение файла tif или bmp.
- Светодиод имеет схематическое исполнение в виде обычного диода, заключенного в окружность. Над правой верхней частью окружности расположены две параллельные стрелки, идущие от основного элемента под углом вправо вверх.
- Возле светодиода указывают его полный буквенно-цифровой индекс.
- Как бы ни был расположен светодиод на схеме, с полярностью в ту или иную сторону либо под углом, направление стрелок остается неизменным.
- Вывод, идущий от треугольника, на схеме символизирует анод (+), а от вертикальной черты – катод (-).
- Светодиод на схеме должен иметь свой порядковый номер. Нумерация идет слева направо, сверху вниз.
Светодиод – полярность обозначения
Обозначение светодиода на схеме позволяет легко определить его полярность, но чтобы определить ее у только что купленного элемента, нужно посмотреть на его контакты. Плюсовой вывод анода обычно имеет большую длину, чем катода.
Если светодиод установлен на плате, а она по каким-либо причинам не имеет маркировки элементов, то полярность полупроводника можно определить, внимательно посмотрев на его корпус. Со стороны катода (отрицательного вывода) на корпусе есть засечка плоской формы. Также у прозрачных типов корпусов светодиода видна его внутренность. Подобие чашечки, в которой расположен кристалл полупроводника, имеет прямое соединение с катодом.
В том случае, когда невозможно определить полярность вышеперечисленными способами, но в наличие есть электронный мультиметр, можно использовать его. Берут обычный диод с известной полярностью, ставят прибор на операцию прозвонки и подключают к полупроводнику. Запоминают полярность, когда диод проводит ток. Подключают светодиод к измерительным щупам. Добиваются, чтобы он проводил ток, отмечают его полярность.
Светодиод на плате
При сборке печатной платы радиомонтажники пользуются схемой и перечнем элементов спецификации. В соответствии с этим перечнем наносится специальная маркировка с указанием вида элемента и номера позиции его на схеме. Существуют международные стандарты обозначений на плате, которые повсеместно используются в импортной аппаратуре.
Обозначение светодиода на плате присутствует в виде графического изображения, буквенной кодировки и числа. Первое отображает в основном полярность полупроводника, буквы указывают на тип прибора, а число – на порядковый номер его в схеме и перечне.
Графическое обозначение светодиода на схеме платы идентично его изображению в чертеже, но может не содержать окружность вокруг значка диода. Буквенная кодировка выполнена заглавными латинскими буквами – LED (импортные схемы) и HL (отечественные). Число идет после букв либо внизу. Без числа невозможно определить параметры полупроводника, которые на плате не указывают за редким исключением.
Маркировка светодиодов
Буквенное обозначение светодиода на схеме (маркировка) несет всю информацию о характеристиках конкретного полупроводникового прибора. Маркировка содержит довольно много символов, поэтому ее не ставят на корпус прибора, а приводят в схеме либо на упаковке не распаянных элементов. Светодиоды в лентах идут бухтами в катушках, на которых проставлены маркировочные символы. Символьная кодировка отражает:
- Серию продукции.
- Цвет излучения светодиода. Современные светоизлучающие диоды бывают белого, зеленого, красного, синего, оранжевого, желтого цветов.
- Качество цветового потока. Например, светодиод для освещения в доме или на улице, индикации приборов, подсветки, для матриц изображения.
- Тип линзы. Бывают рассеивающие свет приборы и узконаправленного излучения с куполообразными, прозрачными и матовыми линзами.
- Мощность светового потока.
- Потребляемая мощность электроэнергии.
- Код идентификации производителя. Не имеет практической нагрузки.
- Символы резерва. Производители оставляют их для возможной модификации элементов.
Не существует определенного стандарта в маркировке светодиодов, поэтому каждый производитель имеет свою собственную кодировку. Запомнить ее невозможно, но серьезных производителей этого товара на рынке не так уж много. Среди них можно выделить такие фирмы, как Philips, Cree и Samsung.
Заключение
Кроме обычных светодиодов с выводами, существуют SMD-светодиоды с контактными площадками. Они отличаются маленькими размерами. Буквенное обозначение светодиода этого типа на схеме идентично с LED-элементами, но на плате упрощено и обычно сводится к указанию полярности.
Маркировка диодов: таблица обозначений
Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.
Характеристики и параметры диодов
В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.
В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.
Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.
Обозначения и цветовая маркировка диодов
Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.
Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.
Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.
Маркировка импортных диодов
В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.
В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.
Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.
Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.
По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.
Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.
Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.
Маркировка диодов анод катод
Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.
Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:
- Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
- Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.
Защищенный сайт Магазин с Уверенность Лучше всего просматривать при использовании: Internet Explorer или Mozilla Firefox | Светодиодные схемы Наша цель — дать обзор основных типы цепей, используемых для питания светодиодов. Принципиальные схемы или схемы, которые Следующие ниже изображены с использованием стандартных электронных символов для каждого компонента.Определения символов следующие: Символ светодиода является стандартным символом для диода с добавление двух маленьких стрелок, обозначающих излучение (света). Отсюда и название, свет излучающий диод (LED). «A» обозначает анод или плюс (+) соединение, а «C» катод или минус (-) соединение. У нас есть сказал это раньше, но стоит повторить: светодиоды строго устройств постоянного тока и не будут работать с переменным током (переменным Текущий). При питании светодиода, если источник напряжения точно не соответствует Напряжение светодиодного устройства, необходимо использовать «ограничивающий» резистор последовательно со светодиодом.Без этого ограничивающего резистора светодиод был бы мгновенно выгорают. В приведенных ниже схемах мы используем символ батареи для обозначения источник. Электропитание может быть легко обеспечено источником питания или колесом. пикапы с трассы на макете. Каким бы ни был источник, важно то, что он должен быть постоянным током и хорошо отрегулирован, чтобы предотвратить колебания перенапряжения, вызывающие повреждение Светодиоды. Если источник напряжения должен быть запитан от датчиков рельсов, мост выпрямитель должен использоваться, чтобы светодиоды получали только постоянный ток и неизменный полярность. Обозначения переключателей довольно просты. Однополюсный, однонаправленный переключатель (SPST) — это просто функция включения-выключения, в то время как SPDT (двухпозиционный) переключатель позволяет выполнять маршрутизацию между двумя разными цепями. Оно может использоваться в качестве переключателя на одно нажатие, если одна сторона ни к чему не подключена. В кнопка — выключатель мгновенного действия. Обозначение конденсатора, которое мы здесь используем, относится к электролитическому или конденсатор поляризованного типа. То есть его необходимо использовать в цепи постоянного тока. и подключен правильно (плюс подключение к плюсовому напряжению), или он будет поврежден.В наших целях он используется для мгновенного хранения, чтобы помочь «сглаживать» колебания питающего напряжения, вызванные малыми потерями в колесах подхватывание силового броска на грязных участках пути или в зазорах на стрелочных переводах. Поляризованные конденсаторы классифицируются по разным номинальным значениям максимального постоянного напряжения. Всегда используйте конденсатор, номинал которого безопасно превышает максимальное напряжение, ожидаемое в вашем заявление. Базовая схема Это настолько просто, насколько возможно. Цепь одного светодиода — это строительный блок, на котором основаны все наши другие примеры.Для правильного функционирования должны быть известны три значения компонентов. Напряжение питания (Вс), светодиод устройства рабочее напряжение (Vd) и рабочий ток светодиода (I). С этими известными, используя вариант закона Ома, правильный ограничительный резистор (R) может быть определен. Формула: Пример работы с этой формулой можно найти на нашем Страница советов по подключению моста. Шаг проверки 7 для подробностей. На схеме выше у нас есть как ограничивающий резистор, так и переключатель, подключенный к положительной (+) стороне цепи.Мы сделали это, чтобы соблюдать «стандартные электрические методы» при работе с «горячими» (плюсовая) сторона цепи, а не минус (-) или сторона «земли». В схема действительно функционировала бы адекватно в любом случае, но стандартная безопасность Практика рекомендует «отключение» на «горячей» стороне, чтобы свести к минимуму возможность электрического замыкания проводов на другие «заземленные» цепи. Цепи с двумя или более светодиодами Цепи с несколькими светодиодами делятся на две основные категории; цепи с параллельным соединением и цепи с последовательным соединением.Третий тип, известный как последовательная / параллельная схема представляет собой комбинацию первых двух и также может быть довольно полезно в модельных проектах. Общие правила для параллельных и последовательных цепей светодиодов могут быть указано следующее:
Параллельная проводная светодиодная схема Выше показаны два примера одной и той же схемы. Рисунок 1 на слева — схематическое изображение трех светодиодов, подключенных в параллельно батарее с переключателем для их включения или выключения. Вы заметите, что в этой схеме каждый светодиод имеет свой ограничивающий резистор и напряжение питания стороны этих резисторов соединены вместе и выведены на плюсовую батарею. терминал (через переключатель).Также обратите внимание, что катоды трех светодиодов соединены вместе и выведены на отрицательную клемму аккумуляторной батареи. Эта «параллель» соединение компонентов — вот что определяет схему. Если бы мы построили схему точно так, как показано на рисунке 1, с проводами, соединяющими устройства, как показано на схеме (перемычки между резисторами и перемычками между катодными соединениями), мы необходимо учитывать допустимую нагрузку по току выбранного провода. Если проволока слишком мала, может произойти перегрев (или даже плавление). Во многих случаях на этом веб-сайте мы приводим примеры Светодиоды подключены с помощью нашего магнитного провода с покрытием №38. Мы выбрали проволоку этого размера для очень конкретные причины. Он достаточно мал (диаметр 0045 дюймов, включая изоляцию). покрытие), чтобы выглядеть прототипом в виде провода или кабеля в большинстве проектов, даже в Z-шкала, и она достаточно велика, чтобы подавать ток на осветительные устройства 20 мА (например, наши Светодиоды) с дополнительным запасом прочности 50%. Как указано, сплошной медный провод №38 имеет номинальный рейтинг 31,4 мА и максимальный рейтинг 35.9ma. Мы могли бы выбрать Провод №39 с номинальным значением тока 24,9 мА, но мы чувствовали, что этого не произойдет. безопасно учитывать колебания номиналов резисторов или отдельных светодиодов. Кроме того, немного меньший диаметр (0,004 дюйма вместо 0,0045 дюйма), вероятно, не сделать заметную разницу в моделировании. Возвращаясь к Рисунку 1; вы можете увидеть в этом примере текущее требование для каждой пары светодиод / резистор, добавляется к следующей и следует правило параллельной цепи (# 1) выше. Мы не могли безопасно использовать для этого наш магнитный провод №38. всю схему.Например, перемычка с нижнего катода светодиода на минус клемма аккумулятора будет нести 60 мА. Наш провод быстро перегревается и возможно расплавление, вызывающее разрыв цепи. Для этого Причина, на Рисунке 1 — это простой способ « схематично » представить как компоненты должны быть подключены для правильной работы схемы. В реальной жизни наш реальный проект электромонтажа будет больше похож на Рис. 2. В этом случае мы можем безопасно использовать наш провод №38 для всего, кроме соединение между плюсовой клеммой аккумуляторной батареи и переключателем.Здесь нам понадобится по крайней мере провод # 34 (номинал 79,5 мА), но мы, вероятно, использовали бы что-то вроде Radio Изолированная оберточная проволока Shack’s №30. Это недорого, легко доступно и будет нести 200ма (номинальная спец.). Достаточно большой для нашего приложения. Также, мы, вероятно, не стали бы паять три резистора вместе на одном конце, как как мы показали, мы просто использовали бы еще один кусок этого # 30, чтобы соединить их общие заканчивается вместе и к выключателю. Макеты железных дорог могут стать электрически сложными, включая всевозможные требования к проводке для таких вещей, как мощность трека, переключение, освещение, сигнализация, DCC и др.; у каждого свои потенциальные текущие потребности. Чтобы помочь вам в планировании таких вещей, таблица общих проводов (сплошная медь однониточные) размеров и их токонесущей способности. здесь. Последовательная проводная светодиодная схема Эта схема представляет собой простую последовательную цепь для питания трех светодиодов. Вы заметите два основных различия между этой схемой и параллельной схемой. Все светодиоды используют один ограничивающий резистор, а светодиоды подключены анод-катод по схеме «гирляндной цепи».Следуя правилу № 2 выше, формула, которую мы будем использовать для определения нашего ограничивающего резистора, является еще одной вариацией формулы, которую мы использовали выше. Формула серии для вышеуказанной схемы будет записывается следующим образом: Единственная реальная разница в том, что наш первый шаг — добавить напряжение устройства для количества светодиодов, которые мы используем вместе, затем вычтите это значение из нашего напряжения питания. Затем этот результат делится на ток наших устройств (обычно 20 мА или 0,020).Все просто, да? Не забудьте также рассмотрите правило №3. То есть умножьте напряжение питания на 90% (0,9) и сделайте убедитесь, что сумма напряжений всех устройств (светодиодов) не превышает этого значения. Это почти все, что нужно … Нам нужно знать, какой провод мы собираемся использовать, и что какое потребление тока можно ожидать от такой схемы? Что ж, в параллельная схема выше, для трех светодиодов по 20 мА каждый, мы будем потреблять 60 мА у батареи. Итак … 60 мА? Неа. Фактически, чуть меньше 20 мА для всех трех светодиодов! Для простоты назовем его 20. Другой способ сформулировать правила 1 и 2 выше:
Давайте рассмотрим несколько примеров с использованием 9-вольтовой батареи (или блок питания): Пример № 1 Мы хотим подключить два наших супербелых светодиода 2×3 последовательно.
Пример № 2 Мы хотим последовательно соединить четыре наших красных светодиода Micro.Какие резистор мы должны использовать?
Пример № 3 Мы хотим подключить три наших Micro Super-white светодиода вместе последовательно.
Здесь мы снова можем использовать наш провод # 38 для всего, кроме соединение между источником питания и выключателем. Чтобы определить, какие ограничения резисторы тут требуются, мы просто рассчитываем каждый отрезок схемы раздельно. Неважно, какой сегмент определяется первым, но мы сделаем одиночный светодиод / резистор.Для этого мы используем нашу оригинальную формулу: Мы знаем, что Vs (для этих примеров) составляет 9 вольт. А также. мы Знайте, что Vd составляет 3,5 вольта, а I — 20 мА. Итак, (9 — 3,5) = 5,5 .020 = 275. Это резистор нестандартного значения, поэтому мы используйте здесь резистор 300 Ом. Теперь посчитаем последовательную пару светодиодов. Формула для всего два светодиода будут: Опять же, против составляет 9 вольт, поэтому 9 — (3.5 + 3.5) = 2 . 020 = 100, и это стандарт номинал резистора. Были сделаны. Теперь мы можем подключить этот пример, и все будет усердно работать. Подсветка Kato Amtrak Superliner с подсветкой EOT Вот схема легкового автомобиля, подключенного для освещения с помощью мостовой выпрямитель и емкость 600 мкФ для обеспечения На все светодиоды подается постоянный ток без мерцания и стабильной полярности. Супер-белый светодиод освещает салон автомобиля, а два красных светодиода Micro обеспечивают световой сигнал в конце поезда.А добавлен переключатель, чтобы при желании можно было отключить функцию EOT. Бег пример этой машины (с мерцанием 800 мкФ control) можно увидеть здесь. Последовательная / параллельная проводная светодиодная цепь Здесь мы немного расширили наш пример №3 выше. У нас есть три группы последовательно-пар светодиодов. Каждый рассматривается как отдельная цепь для для расчетных целей, но соединены вместе для общего источника питания. Если бы все это были наши Micro Сверхбелые светодиоды, мы уже знаем все необходимое для построения этой схемы.Кроме того, мы знаем, что каждая последовательная пара потребляет ток 20 мА, поэтому всего на источнике питания будет 60 мА. Довольно просто. Самое интересное в последовательных / параллельных цепях светодиодов — это то, как Вы можете легко увеличить количество лампочек на данном источнике питания. Возьми наш Например, импульсный источник питания N3500. Он обеспечивает ток 1 ампер (1000 мА). на 9 вольт. Используя нашу ранее параллельную схему, мы могли подключить 50 наших светодиодов 2×3, или Micro, или Nano Super-white (или любой комбинации равно 50), каждый со своим ограничительным резистором, и этот небольшой источник справится с этим.Этого, наверное, хватило бы для города приличных размеров. Теперь, если мы немного поумнее, мы могли бы использовать несколько последовательных / параллельных цепей и легко увеличить это количество, используя всего одну поставку. Если бы они все были последовательно / параллельно, мы могли запустить 100 огней. Гипотетически, если бы мы были выполняя проект с использованием наших красных светодиодов N1012 Micro (напряжение устройства 1,7 В), мы смог запустить 400 светодиодов с нашим небольшим запасом. Это красиво странное думал, однако.Кто-нибудь в темных очках? Для получения дополнительной информации об использовании нашего импульсного источника питания для вашего макеты или проекты диорам, нажмите здесь. Не забывайте правило №4. При создании групп серий убедитесь, что напряжение устройства и текущие требования очень похожи. Достаточно сказать, что смешение Светодиоды с большой разницей напряжения устройства или потребляемым током в та же группа серий будет , а не даст удовлетворительные результаты. Наконец, проявите изобретательность.Вы можете смешивать и сочетать. Последовательные схемы, параллельные, однопроводные светодиоды, последовательные / параллельные цепи, белые группы, красные группы, желтый, зеленый, что угодно. Пока вы рассчитываете каждый случай для правильного ограничения сопротивление и следите за схемами проводки на предмет правильного размера проводов, освещения проекты будут работать с очень удовлетворительными результатами. Еще кое-что для тех из вас, кто чувствует себя некомфортно работая «вручную» с приведенными выше формулами, мы создали несколько калькуляторов делать вычисления за вас.Все, что вам нужно сделать, это ввести значения и нажать кнопка «рассчитать». Их можно найти, нажав здесь. … ДА БУДЕТ СВЕТ … 2008 Ngineering |
Условное обозначение светодиода на схеме
Интересно наблюдать, с какой поразительной скоростью одна техника сменяется другой. Лет тридцать назад нас вполне порадовала используемая нами электроника, простые автомобили, где-то неуютные и тихоходные, скромные домики без евроремонта.Но так устроен человек, который постоянно стремится к чему-то более совершенному, и сейчас практически каждая сфера жизни подвергается постоянной модернизации. Коснулись этого процесса и системы индикации и освещения. Итак, на смену лампам накаливания пришли более совершенные полупроводниковые элементы — светодиоды.
Излучающий кристалл
История использования полупроводников старше, чем начало использования ламп электронного типа. Попов А.С., которого считают изобретателем радио, искал наличие радиоволн с помощью простого полупроводникового прибора.Первый диод (детектор) Попова был выполнен из полупроводникового кристалла, закрепленного в держателе, и пружинного конусного контакта из вольфрама или стали. Этот контакт зависел от области полупроводника, и в зависимости от точки контакта можно было найти наиболее четкий сигнал радиостанции.
Способность некоторых кристаллов излучать свет под действием тока была открыта несколько позже, случайно, но поначалу не использовалась на практике. Сейчас светодиоды широко используются в спецтехнике и в быту.
Что такое светодиод, как он выглядит на схеме?
Светоизлучающий диод — это своего рода полупроводниковый элемент, который имеет свойство кристалла излучать свет под действием проходящего через него электрического тока. Этот эффект проявляется не во всех полупроводниках, а только в тех, в которых в процессе рекомбинации электронов и дырок происходит выделение энергии в световом диапазоне. Светодиод, как и обычный диод, имеет pn переход и пропускает ток только в одном направлении.
Особенность светодиода как светоизлучающего устройства заключается в том, что он напрямую разделяет кванты света. Это отличает его от ламп накаливания, где сначала спираль нагревается до определенной температуры, или галогенных ламп с эффектом ионизации. Энергетические потери в светодиодах минимальны.
Конструктивно в состав светодиода входят подложка с нанесенным на нее кристаллом, выводы для подключения к электрической цепи и корпус, который также является оптической системой.Обозначение светодиода на схеме имеет определенное графическое выражение, на электронной плате оно обозначено специальной кодировкой.
Для чего нужен светодиод и как он отражается на его изображении на схеме?
Светодиод излучает свет, это его предназначение. А на схематическом изображении это четко обозначено двумя стрелками, идущими от элемента. Аппарат получил очень широкое применение:
- Другая индикация. Для сигнализации включения определенных режимов работы электронных устройств используются отдельные элементы.Группы устройств используются в цифровых дисплеях, где каждый светодиод играет роль сегмента цифры или буквы. Условное обозначение светодиода на схеме в группе не задается отдельно для каждого, а отображается вся группа в виде индикатора с разветвлением и нумерацией контактов.
- Для домашнего, общественного и промышленного освещения.
- В составе экранов для уличного вещания, а также при создании бегущих строк.
- В оптронах.Затем к обозначению светодиода на схеме добавляется изображение фотоприемного элемента.
- Волоконно-оптические системы. Здесь светодиоды действуют как излучатели модулированной оптической волны.
- Для подсветки экранов на жидких кристаллах.
- Индустрия дизайна и развлечений.
Особенности обозначения полупроводников на чертежах
Технические нормы и правила регламентируют обозначение светодиода на схеме. ГОСТ 2.702-2011 предписывает:
- Отображение светодиода и других элементов схемы с помощью чертежных принадлежностей или в электронном виде.В этом случае последняя версия должна иметь разрешение не менее 300 точек на дюйм и содержать расширение файла tif или bmp.
- Светодиод имеет схематический вариант в виде обычного диода, заключенного в кружок. Над правой верхней частью круга расположены две параллельные стрелки, идущие от основного элемента под углом вправо вверх.
- Рядом со светодиодом указать его полный буквенно-цифровой индекс.
- Независимо от того, как светодиод на схеме расположен, с полярностью в ту или иную сторону или под углом, направление стрелок остается неизменным.
- Выход из треугольника символизирует анод (+) на диаграмме, а катод (-) на вертикальной линии.
- Светодиод на схеме должен иметь собственный серийный номер. Нумерация идет слева направо, сверху вниз.
Светодиод — полярность обозначения
Обозначение светодиода на схеме позволяет легко определить его полярность, но для определения ее по вновь приобретенному элементу нужно смотреть на его контакты. Положительный вывод анода обычно имеет большую длину, чем катод.
Если светодиод установлен на плате и по какой-то причине на нем нет маркировки элемента, полярность полупроводника можно определить, внимательно присмотревшись к его корпусу. Сбоку от катода (отрицательный вывод) на корпусе есть выемка плоской формы. Также внутри видны прозрачные типы корпусов светодиодов. Подобие чашки, в которой расположен кристалл полупроводника, имеет прямую связь с катодом.
В том случае, если невозможно определить полярность вышеуказанными методами, но есть в наличии электронный мультиметр, можно им воспользоваться.Возьмите обычный диод с известной полярностью, поставьте прибор на вершинный режим и подключите его к полупроводнику. Помните полярность, когда диод проводит ток. Подключите светодиод к тестовым щупам. Они хотят, чтобы он проводил ток, отметьте его полярность.
Светодиод на плате
При сборке печатной платы радиомониторы используют схему и перечень элементов из спецификации. В соответствии с этим списком делается специальная маркировка с указанием типа элемента и номера его позиции на схеме.На плате есть международные стандарты обозначения, которые повсеместно используются в импортном оборудовании.
Обозначение светодиода на плате присутствует в виде графического изображения, буквенного кода и числа. Первый отображает в основном полярность полупроводника, буквы обозначают тип устройства, а цифра — его порядковый номер в схеме и списке.
Графическое обозначение светодиода на печатной плате идентично его изображению на чертеже, но не может содержать кружок вокруг значка диода.Алфавитная кодировка выполнена заглавными латинскими буквами — LED (импортные схемы) и HL (отечественные). Номер идет после букв или ниже. Без номера невозможно определить параметры полупроводника, которые плата не указывает за редким исключением.
Маркировка светодиодов
Буквенное обозначение светодиода на схеме (маркировка) несет всю информацию о характеристиках конкретного полупроводникового прибора. Маркировка содержит множество условных обозначений, поэтому она не наносится на корпус устройства, а вносится в схему или на упаковку неотглавленных элементов.Светодиоды в лентах идут катушками в катушках, на которых размещены маркировочные символы. Кодировка символов отражает:
- Серия товаров.
- Цвет светодиодного излучения. Современные светодиоды бывают белого, зеленого, красного, синего, оранжевого, желтого цветов.
- Качество цветопередачи. Например, светодиод для освещения дома или на улице, индикации приборов, освещения, для матриц изображения.
- Тип объектива. Есть устройства светорассеивания и узконаправленного излучения с куполообразными, прозрачными и непрозрачными линзами.
- Мощность светового потока.
- Потребляемая мощность.
- Идентификационный код производителя. Практической нагрузки не имеет.
- Условные обозначения заповедника. Производители оставляют их для возможной модификации элементов.
В маркировке светодиодов нет определенного стандарта, поэтому у каждого производителя своя кодировка. Запоминать нельзя, но серьезных производителей этого товара на рынке не так уж и много. Среди них есть такие компании, как Philips, Cree и Samsung.
Вывод
Помимо обычных светодиодов с выводами существуют SMD-светодиоды с контактными площадками. Они небольшие по размеру. Буквенное обозначение этого типа светодиода на схеме идентично светодиодным элементам, но на плате оно упрощено и обычно сводится к указанию полярности.
Где взять светодиоды. Блог ›Светодиоды. Обозначение светодиода на схеме
Поскольку светодиод является полупроводниковым прибором, то при включении схемы необходимо соблюдать полярность.Светодиод имеет два вывода, один из которых является катодом («минус»), а другой — анодом («плюс»).
Светодиод будет гореть только Прямое питание, как показано
При повторном включении светодиод не «загорается». Более того, возможен выход из строя светодиода при низких допустимых значениях обратного напряжения.
Из-за формы вольт-амперной характеристики эти диоды должны питаться от источника тока. Этот метод широко используется. Из-за производственных отклонений характеристики отдельных деталей вольт-амперные характеристики могут незначительно отличаться.Из-за наклона рабочей части характеристики диодов, включенных параллельно, могут иметь разную силу света, в худшем случае части, через которые проходит больший ток, могут быть разрушены. Поэтому рекомендуется их последовательное подключение. Это обеспечивает одинаковый ток, протекающий через все диоды.
Обозначение светодиода на схеме
Поскольку не всегда можно полагаться на общие правила определения полярности ответвлений, рекомендуется проверить их полярность, просмотрев техпаспорт.В качестве альтернативы полярность можно определить, подключив диод к источнику низкого напряжения последовательно с защитным резистором.
Зависимости тока от напряжения с прямыми (синяя кривая) и обратными (красная кривая) включениями показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует свое значение тока, протекающего через диод. Чем выше напряжение, тем выше ток (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxobr (соответственно для прямого и обратного переключения).При приложении напряжения выше этих значений происходит электрический пробой, в результате чего светодиод выходит из строя. Также существует минимальное значение напряжения питания Umin, при котором горит светодиод. Диапазон питающих напряжений между Umin и Umax называется «рабочей» зоной, так как именно здесь обеспечивается работа светодиода.
1. Светодиод один, как его правильно подключить в простейшем случае?
Для того, чтобы в простейшем случае правильно подключить светодиод, нужно подключить его через токоограничивающий резистор.
Пример 1
Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.
Рассчитать сопротивление токоограничивающего резистора
R = Абсолют / LED
U погашение = U мощность — U LED
Питание = 5 В
LED = 3 В
светодиоды = 20 мА = 0,02 A
R = (5-3) / 0,02= 100 Ом = 0.1 кОм
То есть нужно взять резистор 100 Ом
П.С. Вы можете воспользоваться онлайн-калькулятором для расчета резистора для светодиода
.2. Как подключить несколько светодиодов?
Подключаем несколько светодиодов последовательно или параллельно, рассчитывая необходимые сопротивления.
Пример 1
Есть светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить 3 светодиода к источнику 15 вольт.
Выполните расчет: 3 светодиода на 3 вольта = 9 вольт, то есть источника 15 вольт достаточно для включения светодиодов серии
Расчет аналогичен предыдущему примеру.
R = Абсолютный / Светодиод
Питание = 15 В
Светодиод = 3 В
Светодиоды = 20 мА = 0,02 A
R = (15-3 * 3) / 0,02 = 300 Ом = 0,3 кОм
Пример 2
Пусть будут светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА.Необходимо подключить 4 светодиода к источнику 7 вольт
Выполняем расчет: 4 светодиода по 3 вольта = 12 вольт, поэтому нам не хватает напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно и параллельно. Делим их на две группы по 2 светодиода. Теперь необходимо произвести расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничивающих резисторов для каждой ветви.
R = Абсолют / LED
UDue = U мощность — N * LED
Power = 7 V
LED = 3 V
LEDs = 20 mA = 0.02 A
R = (7-2 * 3) / 0,02 = 50 Ом = 0,05 кОм
Так как светодиоды в ответвлениях имеют одинаковые параметры, то и сопротивления в ответвлениях одинаковы.
Пример 3
Если есть светодиоды разных марок, то объединяем их таким образом, чтобы в каждой ветке были светодиоды только ОДНОГО типа (или с одинаковым рабочим током). При этом не обязательно соблюдать одно и то же напряжение, потому что для каждой ветви мы рассчитываем собственное сопротивление
Например, есть 5 разных светодиодов:
1-й красный напряжение 3 В 20 мА
2-й зеленый напряжение 2.5 В 20 мА
3-е напряжение синего цвета 3 В 50 мА
4-е напряжение белого цвета 2,7 В 50 мА
5-е напряжение желтого цвета 3,5 В 30 мА
Так как мы делим светодиоды на группы по току
1) 1-й и 2-й
2) 3-й и 4-й
3) 5-й
рассчитываем для каждой ветви резисторы:
R = Абсолютное / LED
Погашение = U мощность — (Y LED + Y LED X + …)
Power = 7 V
LED1 = 3 V
LED2 = 2,5 V
LEDs = 20 мА = 0.02 A
R1 = (7- (3 + 2,5)) / 0,02 = 75 Ом = 0,075 кОм
аналогично
R2 = 26 Ом
R3 = 117 Ом
Аналогичным образом можно расположить любое количество светодиодов.
ВАЖНОЕ ПРИМЕЧАНИЕ !!!
При расчете предельного сопротивления получаются числовые значения, которые не находятся в стандартном диапазоне сопротивлений. ПОЭТОМУ мы выбираем резистор с сопротивлением немного большим, чем было рассчитано.
3. Что будет, если будет источник напряжения с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?
Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепи без токоограничивающего сопротивления.Минусы очевидны — яркость зависит от напряжения питания. Лучше использовать преобразователи постоянного тока в постоянный (повышающие преобразователи напряжения).
4. Можно ли включить несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и меньше)? В «китайских» фонариках так сделано.
Опять же, это приемлемо в радиолюбительской практике. Минусы такого включения: поскольку светодиоды имеют определенный разброс параметров, то будет наблюдаться следующая картина, одни будут светиться ярче, другие — тусклее, что неэстетично, что мы видим в вышеперечисленных фонариках.Лучше использовать преобразователи постоянного тока в постоянный (повышающие преобразователи напряжения).
Хотя электрическим параметром № 1 для светодиода является номинальный ток, часто для расчетов необходимо знать напряжение на его выводах. Под термином «напряжение светодиода» понимается разность потенциалов на pn-переходе в разомкнутом состоянии. Это эталонный параметр и вместе с другими характеристиками указывается в паспорте на полупроводниковый прибор. Но иногда на руках экземпляры, о которых ничего не известно.Как узнать падение напряжения на светодиоде? Об этом и пойдет речь.
Теоретический метод
Отличный намек в этом случае — цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода изготовлен из прозрачного компаунда, то его цвет остается загадкой, разгадать которую поможет мультиметр. Для этого переключите цифровой тестер в положение «разомкнутая цепь» и прикоснитесь к контактам светодиода попеременно с щупами. Рабочий элемент при прямом смещении будет испытывать легкое свечение кристалла.Таким образом, можно сделать вывод не только о цвете свечения, но и о исправности полупроводникового прибора. Существуют и другие способы проверки излучающих диодов, которые подробно описаны в.
.Светодиоды разного цвета изготавливаются из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее падение напряжения на pn-переходе. Из-за того, что в производстве кристаллов используются десятки химических соединений, нет точного напряжения для всех светодиодов одного цвета.Однако существует определенный диапазон значений, которых часто бывает достаточно для проведения предварительных расчетов элементов электронной схемы. С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые можно соединить последовательно. Слой люминофора в светодиодах SMD может скрыть целую цепочку кристаллов. Яркий пример — миниатюрные многокристальные светодиоды от компании, падение напряжения на которых зачастую значительно превышает 3 вольта.
В последние годы появились белые светодиоды SMD, в корпусе которых есть 3 последовательно соединенных кристалла. Их часто можно встретить в китайских светодиодных лампочках на 220 вольт. Убедиться в исправном состоянии led-кристаллов в такой лампе естественно с помощью мультиметра. Штатная батарея тестера выдает 9В, а минимальное напряжение срабатывания трехчипового белого светодиода составляет 9,6В. Также есть двухкристальные модификации с порогом 6 вольт.
Узнать все технические характеристики светодиода можно из сети Интернет. Для этого скачайте даташит на похожую внешне модель, обязательно такого же цвета свечения, сверьте паспортные размеры с реальными и выпишите номинальный ток и падение напряжения. Следует иметь в виду, что эта методика очень приблизительна, поскольку светодиоды на 20 мА и 150 мА с разбросом напряжения до 0,5 вольт могут быть изготовлены в одном корпусе.
Практическая методика
Наиболее точные данные о прямом падении напряжения на светодиодах можно получить, проведя практические измерения.Для этого понадобится регулируемый блок питания (БП) с напряжением от 0 до 12 вольт, вольтметр или мультиметр и резистор 510 Ом (подробнее). Схема лабораторных испытаний представлена на рисунке.
Здесь все просто: резистор ограничивает ток, а вольтметр контролирует прямое напряжение светодиода. Постепенно увеличивая напряжение от источника питания, следите за ростом показаний на вольтметре. Когда порог будет достигнут, светодиод загорится. В какой-то момент яркость достигнет номинального значения, и вольтметр перестанет резко увеличиваться.Это означает, что pn-переход открыт, и дальнейшее приращение напряжения с выхода БП будет подаваться только на резистор.
Текущее показание на экране будет номинальным прямым напряжением светодиода. Если продолжать увеличивать мощность схемы, то будет расти только ток через полупроводник, а разность потенциалов на нем изменится не более чем на 0,1-0,2 вольта. Чрезмерная перегрузка по току приведет к перегреву кристалла и электрическому пробою pn-перехода.
Если рабочее напряжение на светодиоде около 1,9 вольт, но нет света, то, вероятно, тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную камеру телефона. На экране должно появиться белое пятно.
При отсутствии регулируемого блока питания можно использовать «коронку» на 9В. Вы также можете использовать сетевой адаптер, который выдает выпрямленное стабилизированное напряжение, при измерениях и пересчитывать значение сопротивления резистора.
Читать то же
Обозначения позиций; или «Почему реле обозначены на схемах« K »? Почему автоматические выключатели называются« Q »?»
Категория: ИнжинирингКраткий ответ
Префиксы «K» и «Q» взяты из стандартов, касающихся «обозначения позиции».
Страны, использующие европейские стандарты, начали с использования IEC 60750, Обозначение элемента в электротехнике . Страны, использующие американские стандарты, используют IEEE Std 315-1975 / ANSI Y32.2, Графические обозначения электрических и электронных схем .
Реленазываются «K» , потому что в IEC 60750 и IEEE 315 так указано .
Это редкий случай, когда европейские стандарты совпадают с американскими!
Я не нашел причин, по которым использовалась именно буква «К». Я догадался, что буква «К» была присвоена говорящим по-немецки, который произнес «катушка реле» как «коил», а «контактор» — как «контактор». К сожалению, «катушка реле» переводится как «relaisspule», а «контактор» переводится как «schütz».Ни одно из этих слов не начинается с «К», что опровергает мою теорию.
Точно так же автоматические выключатели называются «Q» , потому что в IEC 60750 так указано .
IEEE 315 не согласен с использованием «Q» — стандарт IEEE называет автоматические выключатели «CB», что, возможно, является более логичным выбором.
Более длинный ответ
Существуют стандартизированные «Буквенные коды для обозначения вида товара».
В Австралии мы используем буквенные коды, основанные на AS 3702, «Обозначение изделия в электротехнике».AS 3702 — это, по сути, IEC 60750 с дополнительной информацией в приложениях.
КАК 3702-1989: ТАБЛИЦА 1: БУКВОВЫЕ КОДЫ ДЛЯ ОБОЗНАЧЕНИЯ ВИДА ПУНКТА
Буквенный код | Вид товара | ||
---|---|---|---|
A | Сборки, подузлы | ||
B | Преобразователи, преобразователи | ||
C | Конденсаторы | Конденсаторы 9025 906 , запоминающие устройства | |
E | Разное | ||
F | Защитные устройства | ||
G | Генераторы, источники питания | ||
H | Сигнальные устройства | ||
K | Реле, контакторы | ||
L | Индукторы, реакторы | ||
M | Двигатели | ||
N | Аналоговые элементы | ||
Измерительное оборудование 5 | |||
Q | Коммутационные аппараты для силовых цепей | ||
R | Резисторы | ||
S | Коммутационные аппараты для цепей управления, селекторные переключатели | ||
T | Трансформаторы, регуляторы напряжения (силовые)30 906 | U | Модуляторы, чейнджеры |
V | Трубки, полупроводники | ||
Вт | Пути передачи, волноводы, антенны | ||
X | Клеммы, штекеры | , розетки | 906 управляемые механические устройства |
Z | Сети, гибридные трансформаторы, фильтры, эквалайзеры, ограничители |
Большинство буквенных кодов довольно интуитивно понятны.
Другие буквенные коды менее интуитивно понятны.
- B для преобразователей.
- К для реле и контакторов.
- В для ламп и полупроводников. (Рассмотрим «V» для «вакуумной трубки».)
- Q для «коммутационных аппаратов для силовых цепей», то есть автоматических выключателей.
Есть также некоторые странные взаимодействия между перекрывающимися группами. Например, лампы обычно обозначаются буквой «E» для разных предметов. Однако светодиоды являются одновременно лампой и полупроводником, поэтому в AS 3702 Таблица 2, Алфавитный список элементов и их буквенные коды помещены светодиоды под буквенным кодом «V» для полупроводников.
Похоже, что более поздние стандарты, IEC 61346, а затем IEC 81346, попытались сделать буквенные коды более общими. Между категориями все еще существует нечеткое совпадение. Например, в стандарте IEC 81346 буква «E» используется для обозначения всего, что «обеспечивает лучистую или тепловую энергию», включая лампы, или буква «P» для устройств, которые «предоставляют информацию», например, индикации, ламп или светодиодов.
Другой аспект стандарта IEC 81346 состоит в том, что он пытается охватить как механических / жидкостных элементов, так и электрических элементов.Это обобщение означает, что некоторые буквенные обозначения только для электричества изменили значение или были полностью удалены. Например, катушки индуктивности с резисторами теперь сгруппированы буквой «R», а буква «L» больше ни для чего не используется.
Исторические записки
Исходным стандартом МЭК был МЭК 60113: 1959, который был заменен МЭК 60750: 1983. AS 3702: 1989 происходит от IEC 60750.
IEC 60750 был заменен серией IEC 61346 (1996 г.), которая в свою очередь была заменена серией IEC 81346 (2009 г.).IEC 81346 составляет около 300 страниц — намного больше, чем AS 3702, который составляет всего 24 страницы! Если вас интересуют только «буквенные коды для типа элемента», сразу переходите к IEC 81346-2: 2009, таблица 1, Классы объектов в соответствии с их назначением или задачей .
Список литературы
- АС 3702-1989 — «Обозначение изделия в электротехнике». Эквивалентен IEC 60750 Ed 1.0 (1983).
- AS 1103.2-1982 — «Схемы и таблицы для электротехники, Часть 2: Обозначение позиции» (Заменено AS 3702-1989.)
- IEC 750-1983 — AS 3702 эквивалентен, но содержит дополнительную информацию.
- IEC 113 (заменен IEC 750, т. Е. IEC 60750.)
- Стандарт IEEE 315-1975 / Стандарт ANSI Y32.2. Приложение F: «Перекрестный список букв обозначения класса» сравнивает IEC 113-2: 1971 со стандартом IEEE / ANSI. Примечание. IEEE Std 315 является стандартом как для графических символов, так и для букв обозначения класса.
- AS 1102 и IEC 60617 «Графические символы для электротехники».
Понимание схем — Технические статьи
Если вы хотите лучше понять, как читать схемы, это полезное руководство даст вам фору.
Дизайн каждой новой электрической платы начинается с идеи. Затем эта идея определяется словами и диаграммами в спецификации. Любой может зайти так далеко, но следующий шаг требует фундаментального понимания принципиальных схем.
Схема— это мост между концептуальным электрическим дизайном и физической реализацией печатной платы в сборе, или PCBA.
Монтажный ломСхемы имеют две основные цели.Во-первых, они сообщают о замысле дизайна. Для специалиста в области электротехнического проектирования схемы должны четко передавать цель конструкции. И, во-вторых, они существуют, чтобы направлять и управлять разводкой печатной платы.
Чтобы хорошо начать разбираться в схемах, вы должны понимать некоторые основные вещи: символы компонентов, позиционные обозначения (REFDES), цепи и выходы.
Условные обозначения (REFDES)
Ссылочные обозначения — это уникальные идентификационные метки для каждого физического компонента, и они многое говорят о компонентах, к которым они относятся.
Правильное использование REFDES сообщает схемному читателю тип компонента и количество символов на компонент. Хотя существуют стандартные символы, обозначающие различные типы электрических компонентов, которые мы обсудим далее, не все схемы соответствуют всем этим стандартам.
В случае, когда каждый пассивный компонент показан в виде общего блока с выводами, префиксы позиционного обозначения могут многое рассказать вам о типе компонента, который представляет собой символ. Условные обозначения также служат ссылкой на спецификацию материалов (BOM).В спецификации указан номер детали каждого компонента в вашей конструкции PCBA, и он указывает, в каких местах должна быть установлена эта деталь, посредством REFDES.
Стандартный отраслевой формат для позиционных обозначений включает буквенный код, указывающий тип компонента, за которым следует уникальный номер.
BT = батарея | J = разъем | R = резистор |
C = конденсатор | K = реле | S или SW = переключатель |
D = диод | L = индуктор | T = трансформатор |
F = предохранитель | P = разъем | U = интегральная схема |
H = оборудование | Q = Транзистор | Y = кристалл |
Мы будем указывать REFDES для каждого компонента, как мы определяем их символы ниже.
Обозначения компонентов
Обозначения компонентов на схеме представляют физические компоненты, которые будут припаяны к печатной плате (PCB) в процессе сборки. Иногда они также могут представлять собой структуры печатной платы, такие как переходные отверстия или контрольные точки.
Обозначения компонентов часто представляют собой стандартную форму или рисунок, обозначающий тип электрических компонентов, хотя иногда они представляют собой не что иное, как прямоугольник со штырями. Резисторы, конденсаторы, катушки индуктивности, диоды и транзисторы имеют стандартные символы, которые мы кратко рассмотрим ниже.
Обозначения компонентов всегда имеют один или несколько контактов, к которым могут быть выполнены электрические соединения. Каждый вывод условного обозначения схемы имеет номер, соответствующий чертежу физического компонента. Один или несколько символов могут использоваться для обозначения одного электрического компонента. Компоненты с множеством выводов часто представлены множеством схемных символов просто для удобства чтения схем.
В случае части, определяемой несколькими символами, каждый разделенный символ, который относится к одному и тому же физическому компоненту, имеет один и тот же позиционный обозначение.
Обычно используемые условные обозначенияРезистор
Резисторы — чрезвычайно распространенные электрические компоненты. В США они обычно отображаются в виде зигзагообразной линии, хотя в международном стандарте они отображаются как прямоугольник.
Американские (вверху) и международные (внизу) символы для резисторов Резисторыобозначены на схемах условным обозначением (REFDES), начинающимся с буквы «R».
Конденсатор
Конденсаторы тоже очень распространены. Они показаны в виде двух линий, разделенных зазором, что свидетельствует об их фундаментальной конструкции из двух заряженных пластин, разделенных диэлектриком. Два символа первичного конденсатора неполяризованы и поляризованы.
Поляризованные конденсаторы обозначаются изогнутой линией (для обозначения отрицательной клеммы) и / или знаком плюс (для обозначения положительной клеммы).
Обозначения конденсаторов.Показаны неполяризованный конденсатор слева и три варианта поляризованного конденсатора.Конденсаторы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «C».
Катушка индуктивности
Катушки индуктивности, такие как резисторы и конденсаторы, являются основными пассивными компонентами, используемыми в электрических цепях. Индукторы показаны в виде серии кривых, представляющих их основную конструкцию. Индукторы проще всего сконструировать из обмотки проволоки вокруг некоторого материала сердечника.
Обозначение индуктора Катушки индуктивностиобозначены на схемах условным обозначением (REFDES), начинающимся с буквы «L».
Диод
Диоды — это электрические компоненты, которые пропускают ток только в одном направлении. Существует множество типов диодов. Например, стабилитроны не пропускают обратный ток, пока обратное напряжение диода не достигнет определенного заданного уровня.
Обозначение диодаСветоизлучающий диод (LED) излучает свет, когда через него течет ток в прямом направлении. Диод Шоттки устроен так, что он работает так же, как простой диод, но переключается быстрее и имеет меньшее прямое падение напряжения.
Обозначение стабилитрона Обозначение диода ШотткиДиоды обозначены на схемах позиционным обозначением (REFDES), начинающимся с буквы «D» или «Z» (для стабилитронов).«LED» иногда используют для светодиодов.
Транзистор
Транзисторыпохожи на электрические переключатели, в которых напряжение смещения или ток в одной области включает ток, протекающий через основные клеммы.
Существует два основных типа транзисторов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET).
Проще говоря, BJT — это устройства с управляемым током, в которых ток, протекающий через штырь базы или выходящий из него, включает больший ток через штыри коллектора и эмиттера.
BJT символыТакже упрощенно, полевые транзисторы представляют собой устройства, управляемые напряжением, где напряжение на выводе затвора включает ток через выводы стока и истока. Для транзисторов используется множество чертежей, на которых указано различное количество деталей внутренних компонентов.
Символы полевых транзисторовТранзисторы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «Q».«M» иногда используется для устройств MOSFET. «T» иногда используется неправильно, и этого следует избегать.
Для получения более подробной информации о BJT, FET, IGBT и многом другом, ознакомьтесь с нашей статьей, в частности, о схематических символах для транзисторов.
Переменные резисторы
Переменные резисторы, такие как потенциометры и реостаты, представляют собой резисторы, которые изменяют сопротивление в соответствии с настройками пользователя. Двухконтактные переменные резисторы показаны в виде резистора со стрелкой поперек него, а потенциометры (с тремя выводами) добавляют стрелку, указывающую сбоку от символа резистора.
Обозначение реостата Обозначение потенциометраРезисторы, зависящие от напряжения, или варисторы, похожи на переменный резистор, но с линией поперек него вместо стрелки.
Обозначение варистораСпециальные резисторы на схемах чаще всего обозначаются условным обозначением (REFDES), начинающимся с буквы «R», хотя иногда используются «VR» (для переменных резисторов или потенциометров) или «RV» (для варисторов).
Интегральная схема
Интегральные схемы — это целые электрические схемы, созданные из полупроводникового материала в одном корпусе. Интегральные схемы — это процессоры, память, операционные усилители и регуляторы напряжения, которые выглядят как квадраты или прямоугольники, установленные на печатной плате.
Интегральные схемы показаны в виде коробки или набора коробок с помеченными контактами для питания, входов и выходов.
Интегральные схемы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «U», а иногда и с буквы «IC».
Кристалл / осциллятор / резонатор
Все три из них обеспечивают стабильную выходную частоту при включении в цепь. Кристаллы, генераторы и резонаторы — это не одно и то же, они имеют разные характеристики и требуют разных схем поддержки, но их основные цели схожи.
Хрустальный символКристаллы и генераторы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «Y».Иногда используется «X»; это письмо также является универсальным для компонентов, не относящихся к другой категории.
Цифровые логические ворота
Существует много цифровых логических вентилей — больше, чем можно подробно описать в этом обзоре. Полное объяснение цифровой логики и множества различных типов логических вентилей см. На странице учебника AAC о цифровых сигналах и вентилях.
Логические вентилипродаются как интегральные схемы, поэтому на схемах они обозначены позиционным обозначением (REFDES), начинающимся с буквы «U» или иногда «IC», как и другие интегральные схемы.
Операционный усилитель
Операционные усилители и компараторы имеют множество полезных функций в схемах, и на схемах они показаны в виде боковых треугольников с входом (+) и (-), а иногда и с выводами питания и заземления.
Символ операционного усилителяСхема операционного усилителя с двойным питанием (слева) и конфигурация с одним источником питания (справа) с обозначенными контактами питания и заземления
Операционные усилители и компараторы обозначены на схемах позиционными обозначениями (REFDES), начинающимися с буквы «U» или иногда «IC», как и другие интегральные схемы.Кроме того, операционные усилители иногда используют REFDES, начинающиеся с «OP».
Разъем / Заголовок
Разъемы и заголовки — это места, где другие цепи или кабели подключаются к цепи, описанной схемой. Существует большое разнообразие типов и ориентаций соединителей, и они также представлены на схемах с помощью большого количества символов.
Иногда схематические символы представляют собой простые прямоугольники, а иногда схематические символы представляют собой рисунки, которые выглядят как физические соединители, которые они представляют.
Символы разъемовРазъемы и заголовки на схемах чаще всего обозначаются условным обозначением (REFDES), начинающимся с буквы «J» или буквы «P».
Переключатель
Выключателиобычно обозначаются схематическим обозначением, которое представляет тип выключателя и количество полюсов / ходов и штырей.
Символы переключенияКоммутаторы обозначены на схемах условным обозначением (REFDES), начинающимся с букв «SW».
Аккумулятор
Батареи показаны схематическим обозначением, состоящим из длинной и короткой линий, которые вместе представляют один элемент батареи. На практике большинство схематических символов батареи изображаются как две ячейки, независимо от того, сколько ячеек фактически содержит батарея.
Символ батареиБатареи обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «B».
Трансформатор
Трансформаторы обычно обозначаются схематическим обозначением, которое символически представляет принцип работы трансформатора. Это похоже на две параллельные катушки индуктивности, между которыми есть что-то среднее, обычно линия или две.
Трансформаторы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «T».
Предохранитель / PTC
Предохранители или PTC ( p ositive t em temperature c oefficient device) — это устройства защиты цепей, которые «перегорают» (перегорают) или резко увеличивают сопротивление в случае протекания через них слишком большого тока.
Предохранители обычно показаны на схемах с символом, который выглядит как боковая буква «S».
Обозначение предохранителяПредохранители обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «F».
PTC обычно отображаются в виде прямоугольника с линией, проходящей через него по диагонали; тот же символ используется для термисторов PTC.
Символы PTC На схемахPTC обозначены позиционным обозначением (REFDES), начинающимся с буквы «R», «VR» или «PTC».
Некомпонентные символы
В схемах есть другие символы, которые не представляют физические компоненты. Некоторые символы представляют собой физические структуры, которые должны быть встроены в саму печатную плату, например контрольные точки или монтажные отверстия.
Символы контрольных точек
Другие условные обозначения обозначают шины питания или заземления.
Обозначение заземленияДругие условные обозначения используются для соединения между различными страницами схемы, с метками, указывающими, частью какой электрической сети они являются.
Некомпонентные символы часто не имеют позиционных обозначений. Некоторые из них будут иметь условные обозначения (REFDES), начинающиеся с букв «TP» (контрольные точки), «MH» (монтажные отверстия) или «X» (общий универсальный код для типов, не указанных в иных случаях).
Для получения более подробной информации о некоторых символах, обсуждаемых в этой статье, ознакомьтесь с трактовкой Робертом Кеймом схематических символов для пассивных компонентов.
Сетки
На языке схематических и печатных плат цепи — это электрические соединения на печатной плате.Цепи выглядят как линии, соединяющие выводы символа компонента с другими выводами или цепями.
При рисовании схем рекомендуется маркировать важные цепи, чтобы их можно было четко идентифицировать при размещении на печатной плате. Если две цепи не нарисованы как соединенные, но имеют одну и ту же метку, они будут рассматриваться как физически соединенные программным обеспечением захвата схемы, так что при экспорте проекта в инструмент компоновки печатной платы они будут одной и той же цепью.
Изображение схемы с двумя цепями, которые не нарисованы соединенными, но помечены одинаково, поэтому физически соединены, в данном случае «STEPM_R_EN»Рекомендуется использовать специальные символы для отображения сетевых подключений к другим страницам или частям той же страницы, когда они не отображаются как подключенные.Это внутристраничные (внутри страницы) или межстраничные (между страницами) символы соединения.
Межстраничные соединителиДля удобства чтения хорошие схемы избегают перекрытия цепей везде, где это возможно, но это не всегда возможно. Когда две цепи соединяются, большинство инструментов для рисования схем добавляют точку или круг соединения. Отсутствие точки соединения означает, что две цепи не соединены, а просто проходят друг над другом. Более продвинутые инструменты схематического рисования показывают перемычку, чтобы было еще более ясно, что две цепи не связаны.
Связанные сети Несоединенные сети (с проводным переходом)Важные выходные данные: список цепей и спецификация
Нетлист
Самый важный вывод схемы — список соединений. Этот файл или набор файлов является основным входом для программного обеспечения компоновки печатной платы, и он используется разработчиками компоновки для управления размещением и разводкой всех схем на плате.
Форматы списка соединенийразличаются, но обычно они определяют в довольно простой форме каждый компонент или символ в схеме и каждое соединение (сеть) между ними.Если вы назвали свои цепи в схеме, эти имена цепей появятся в списке соединений как точки соединения между частями. Если вы не назвали цепь, средство вывода списка цепей сгенерирует для нее имя.
Как правило, список цепей будет содержать несколько таблиц: в одной перечислены части и их имена, в другой перечислены имена цепей и их соединения и т. Д. Списки цепей также могут использоваться для включения дополнительной информации, необходимой для моделирования цепей SPICE. См. Здесь несколько простых примеров вывода списка соединений.
BOM (Спецификация)
Другой важный вывод схемы — это спецификация или спецификация. Выходная информация BOM — это электронная таблица или база данных, которая сопоставляет все REFDES в схеме с физическим компонентом и номером детали.
Существует множество форматов вывода спецификации, в зависимости от того, насколько сложна ваша схема и база данных деталей, и какой тип вывода вам нужен. В самом простом случае у вас может быть список условных обозначений, на каждом из которых указан номер детали производителя.
Снимок экрана с выходными данными OrCAD BOMБолее сложные спецификации будут включать внутренние номера деталей вашей компании, количество деталей, используемых в нескольких местах, несколько номеров деталей поставщиков, которые могут использоваться для данной детали, и т. Д. Спецификация содержит информацию, необходимую для создания схемы и ее фактического построения. в сборку.
Схемы — это гораздо больше, чем просто эти ключевые вещи.Целые отрасли и карьеры строятся вокруг схематического проектирования и сборки печатных плат. Но понимание этих пяти вещей поможет вам лучше понять самые важные основы построения схем.
Вы просматриваете схему и нуждаетесь в помощи по чему-то, не описанному в этой статье? Расскажите нам об этом в комментариях, и мы можем составить статью, чтобы помочь!
Схемы> Стандартные условные обозначения
Условное обозначение однозначно идентифицирует компонент на электрической схеме или на печатной плате.Условное обозначение обычно состоит из одной или двух букв, за которыми следует цифра, например R13, C1002. За номером иногда следует буква, указывающая на то, что компоненты сгруппированы или сопоставлены друг с другом, например R17A, R17B. IEEE 315 содержит список букв обозначения класса для использования в электрических и электронных сборках. Например, буква R — это приставка для резисторов сборки, C — для конденсаторов, K — для реле.
Обозначение | Тип компонента |
---|---|
А | Раздельная сборка или подсборка (например,грамм. печатная плата) |
В | Аттенюатор или изолятор |
BR | Аттенюатор или изолятор |
К | Конденсатор |
CN | Конденсатор сетевой |
D | Диод (включая стабилитроны, тиристоры и светодиоды) |
DL | Линия задержки |
DS | Дисплей |
Ф | Предохранитель |
FB или FEB | Ферритовый шарик |
FD | Опорная точка |
FL | Фильтр |
G | Генератор или генератор |
GN | Общая сеть |
H | Оборудование |
HY | Циркулятор или направленный переходник |
Дж | Гнездо (наименее подвижный соединитель пары соединителей) | Разъем Jack (разъем может иметь штыревые контакты и / или контакты розетки) |
JP | Звено (перемычка) |
К | Реле или контактор |
L | Индуктор или катушка, или ферритовый шарик |
LS | Громкоговоритель или зуммер |
M | Двигатель |
МК | Микрофон |
MP | Механическая часть (включая винты и крепеж) |
п. | Штекер (наиболее подвижный разъем пары разъемов) | Штекерный разъем (разъем может иметь штыревые контакты и / или контакты розетки) |
PS | Блок питания |
Q | Транзистор (все типы) |
R | Резистор |
RN | Резистор сетевой |
РТ | Термистор |
RV | Варистор |
S | Переключатель (все типы, включая кнопочные) |
Т | Трансформатор |
ТК | Термопара |
ТУН | Тюнер |
TP | Контрольная точка |
U | Неразъемная сборка (e.г., интегральная схема) |
В | Вакуумная трубка |
VR | Переменный резистор (потенциометр или реостат) |
X | Гнездовой соединитель для другого элемента, кроме P или J, в паре с буквенным обозначением этого элемента (XV для гнезда для вакуумной трубки, XF для держателя предохранителя, XA для соединителя печатной платы, XU для соединителя для интегральной схемы, XDS для гнезда для освещения, и т.п.) |
Y | Кристалл или генератор |
Z | Стабилитрон |
Программа сертификации дизайнеров IPC | IPC International, Inc.
CID (Certified Interconnect Designer-Basic) и CID + (Advanced)
Эта программа профессионального развития обеспечивает объективную оценку основных компетенций в области проектирования печатных плат, основанную на отраслевых стандартах, а не на спецификациях отдельной компании.Курсы расширяют и оценивают технические знания: как преобразовать описание электрической схемы в проект печатной платы, который можно изготовить, собрать и протестировать.
CID (Certified Interconnect Designer-Basic) и CID + (Advanced) — ценные профессиональные сертификаты, признанные во всей электронной промышленности. Это техническое образование имеет наибольшую пользу для разработчиков печатных плат с опытом работы не менее 2 лет. Поскольку сертификация дизайнеров закладывает основу для принятия проектных решений и практического применения стандартов IPC, программа открыта для всего инженерного персонала и менеджеров, интересующихся дизайном: продажи, закупки, исследования и разработки, качество, тестирование.
сеансов CID и CID + включают:
Программа сертификации дизайнеров предлагается через лицензированные IPC учебные центры по всему миру.
- Ожидается самостоятельное изучение материалов курса перед сессией — подождите три недели до прохождения курса
- Два полных дня аудиторных занятий под руководством инструктора, имеющего квалификацию IPC
- Один день для экзамена с более чем 100 вопросами с несколькими вариантами ответов — для получения статуса сертифицированного необходимо набрать 73% или выше.
- Типичные сеансы с 8:30 до 17:00
Регистрационный взнос за сертификацию дизайнера включает:
- Все учебные материалы отправлены студенту
- Два полных дня аудиторных занятий под руководством инструктора, имеющего квалификацию IPC
- Экзаменационная сессия и индивидуальная консультация с инструктором
- Сертификат
- Подтверждение статуса сертифицированного — IPC ведет список всех сертифицированных проектировщиков.
Нет необходимости приобретать отдельно какие-либо документы
Аннулирование регистраций не будет возвращено после отправки материалов. Студенты могут работать со своим учебным центром, чтобы перейти на другую сессию.
ПРИМЕЧАНИЕ: Учащиеся, которые не чувствуют себя подготовленными к сдаче экзамена сразу после занятий в классе, могут выбрать тестирование позже, но тестирование должно проходить под наблюдением в учебном центре.
Курсовая сессия для вашей команды
Сессии курса могут быть адаптированы к потребностям организации, но минимальное необходимое время составляет два полных дня аудиторных занятий плюс полдня для экзамена.