Размеры воздуховодов прямоугольных: виды, размеры, стоимость и монтаж

Размеры воздуховодов: прямоугольного и круглого сечения
Воздуховоды производятся прямоугольного и круглого сечения, каждое сечение имеет свою размерную линейку стандартных воздуховодов обусловленную требованием индустрии, особенностью оборудования, удобством монтажа и доставки.

Компания «БизнесФор» производит основные сечения необходимые для формирования систем вентиляции и кондиционирования. Простым решением  будет выбор стандартных воздуховодов из списка представленных.
Это позволит вам экономить время и средства.

Содержание


Размеры прямоугольных воздуховодов

Прямоугольные воздуховоды могут быть изготовлены любого сечения, но не менее 100 мм., и при размере стороны более 3  метров тоже могут быть нюансы. Стандартная длина коробов 1250 мм, по ширине листа.
В таблице приведены основные размеры:
      Размеры в мм         Размеры в мм      
        100*100          600*400
        150*100          700*400
        150*150          700*500
        200*150          800*500
        200*200          800*600
        250*200          900*400
        250*250         900*500
        300*200        1000*500
        300*250        1000*800
        400*200        1200*800
        400*300        1200*1000
        500*250        1500*1000
        500*300        2000*1000
        600*350        2000*1500

* Можно заказать воздуховоды неравные 1250 мм, но это будет дороже за м2 готового изделия, связано это с технологией производства.

Размеры круглых воздуховодов

Размеры воздуховодов круглого сечения сформировались от возможностей станочного оборудования и получили название «евростандарт». Круглые делятся на две группы:
  • спирально-навивные
  • прямошовные
Спирально-навивные — производят на станке, размеры идут согласно оснастке (жесткие кольца) изготовить другие размеры технически не возможно.
      Размер мм         Размер мм    
          100          500
          125          560
          140          630
          160
         710
          180          800
          200          900
          225        1000
          250        1120
          280        1250
          315       1400
          355       1600
          450  

Прямошовные — здесь размерный ряд хоть и привязан к евростандарту, но размеры могут быть любые от 80 мм до 1000 мм, больше сделать возможно, но будет плохая жесткость трубы.

Расчет площади воздуховодов и фасонных изделий, калькулятор воздуховодов и фасонных частей

Прямой участок воздуховода

Площадь воздуховода прямоугольного сечения

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Отвод

Площадь отвода круглого сечения

Исходные данные:

Угол, αο

Угол, αο

-1530456090

м

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь отвода прямоугольного сечения

Исходные данные:

Угол, αο

Угол, αο

-1530456090

м

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Переход

Площадь перехода круглое на круглое сечение

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь перехода прямоугольное на прямоугольное сечение

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь перехода круглого на прямоугольное сечение

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Врезка

Площадь врезки прямой прямоугольной

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь круглой врезки с воротником

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь прямоугольной врезки с воротником

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Тройник

Площадь тройника круглого сечения

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь тройника круглого сечения

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь тройника прямоугольного сечения

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь тройника прямоугольного сечения

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Утка прямоугольного сечения

Площадь утки со смещением в 1-ой плоскости

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь утки со смещением в 2-х плоскостях

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Вытяжные зонты над оборудованием

Площадь зонта островного типа

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Площадь зонта пристенного типа

Исходные данные:

Итоги расчета:

Стоимость, руб:

Добавить в спецификацию

Сохранить текущие расчеты

Сохранить

Сохраненные спецификации

У вас еще нет сохраненных спецификаций

Выбор воздуховода и расчет диаметра

Зачем нужен расчет диаметров воздухопроводов

Промышленная вентиляция проектируется с учетом нескольких фактов, на все существенное влияние оказывает сечение воздухопроводов.

  1. Кратность обмена воздуха. Во время расчетов принимаются во внимание особенности технологии, химический состав выделяемых вредных соединений, и габариты помещения.
  2. Шумность. Системы вентиляции не должны ухудшать условия труда по параметру шумности. Сечение и толщина подбирается таким образом, чтобы минимизировать шум воздушных потоков.
  3. Эффективность общей системы вентиляции. К одному магистральному воздухопроводу могут присоединяться несколько помещений. В каждом из них должны выдерживаться свои параметры вентиляции, а это во многом зависит от правильности выбора диаметров. Они выбираются с таким расчетом, чтобы размеры и возможности одного общего вентилятора могли обеспечивать регламентируемые режимы системы.
  4. Экономичность. Чем меньше размеры потерь энергии в воздуховодах, тем ниже потребление электрической энергии. Одновременно нужно принимать во внимание стоимость оборудования, выбирать экономически обоснованные габариты элементов.

Эффективная и экономичная система вентиляции требует сложных предварительных расчетов, заниматься этим могут только специалисты с высшим образованием. В настоящее время для промышленной вентиляции чаще всего используются пластиковые воздуховоды, они отвечают всем современным требованиям, дают возможность уменьшить не только габариты и себестоимость вентиляционной системы, но и затраты на ее обслуживание.

Пластиковая промышленная вентиляция

Пластиковая промышленная вентиляция

Расчет диаметра воздухопровода

Для расчетов габаритов нужно иметь исходные данные: максимально допустимую скорость движения воздушного потока и объем пропускаемого воздуха в единицу времени. Эти данные берутся из технических характеристик вентиляционной системы. Скорость движения воздуха оказывает влияние на шумность системы, а она строго контролируется санитарными государственными организациями. Объем пропускаемого воздуха должен отвечать параметрам вентиляторов и требуемой кратности обмена. Расчетная площадь воздухопровода определяется по формуле Sс = L × 2,778 / V, где:

Sс – площадь сечения воздуховода в квадратных сантиметрах; L – максимальная подача (расход) воздуха в м3/час;
V – расчетная рабочая скорость воздушного потока в метрах за секунду без пиковых значений;
2,778 – коэффициент для перевода различных метрических чисел к значениям диаметра в квадратных сантиметрах.

Проектировщики вентиляционных систем учитывают следующие важные зависимости:

  1. При необходимости подачи одинакового объема воздуха уменьшение диаметра воздухопроводов приводит к возрастанию скорости воздушного потока. Такое явление имеет три негативных последствия. Первое – увеличение скорости движения воздуха увеличивает шумность, а этот параметр контролируются санитарными нормами и не может превышать допустимых значений. Второе – чем выше скорость движения воздуха, тем выше потери энергии, тем мощнее нужны вентиляторы для обеспечения заданных режимов функционирования системы, тем больше их размеры. Третье – небольшие габариты воздухопроводов не в состоянии правильно распределять потоки между различными помещениями.
Зависимость скорости воздуха от диаметра воздухопровода

Зависимость скорости воздуха от диаметра воздухопровода

  1. Неоправданное увеличение диаметров воздуховодов повышает цену вентиляционной системы, создает сложности во время монтажных работ. Большие размеры оказывают негативное влияние на стоимость обслуживания системы и себестоимость изготавливаемой продукции.

Чем меньше диаметр воздухопровода, тем быстрее скорость движения воздуха. А это не только повышает шумность и вибрацию, но и увеличивает показатели сопротивления воздушного потока. Соответственно, для обеспечения необходимой расчетной кратности обмена требуется устанавливать мощные вентиляторы, что увеличивает их размеры и экономически невыгодно при современных ценах на электрическую энергию.

При увеличении диаметров вышеописанные проблемы исчезают, но появляются новые – сложность монтажа и высокая стоимость габаритного оборудования, включая различную запорную и регулирующую арматуру. Кроме того, воздуховоды большого диаметра требуют много свободного места для установки, под них приходится проделывать отверстия в капитальных стенах и перегородках. Еще одна проблема – если они используются для обогрева помещений, то большие размеры воздуховода требуют увеличенных затрат на мероприятия по теплозащите, из-за чего дополнительно возрастает сметная стоимость системы.

В упрощенных вариантах расчетов принимается во внимание, что оптимальная скорость воздушных потоков должна быть в пределах 12–15 м/с, за счет этого удается несколько уменьшить их диаметр и толщину. В связи с тем, что магистральные воздуховоды в большинстве случаев прокладываются в специальных технических каналах, уровнем шумности можно пренебрегать. В ответвлениях, заходящих непосредственно в помещения, скорость воздуха уменьшается до 5–6 м/с, за счет чего уменьшается шумность. Объем воздуха берется из таблиц СаНиПина для каждого помещения в зависимости от его назначения габаритов.

Проблемы возникают с магистральными воздуховодами значительной протяженности на больших предприятиях или в системах с множеством ответвлений. К примеру, при нормируемом расходе воздуха 35000 м3/ч и скорости воздушного потока 8 м/с диаметр воздухопровода должен быть не менее 1,5 м толщиной более двух миллиметров, при увеличении скорости воздушного потока до 13 м/с габариты воздуховодов уменьшаются до 1 м.

Таблица потери давления

Потери давления таблица

Потери давления

Диаметр ответвлений воздухопроводов рассчитывается с учетом требований к каждому помещению. Допускается использовать для них одинаковые размеры, а для изменения параметров воздуха устанавливать различные регулируемые дроссельные заслонки. Такие варианты вентиляционных систем позволяют в автоматическом режиме изменять показатели работы с учетом фактической ситуации. В помещениях не должно быть сквозняков, вызванных работой вентиляции. Создание благоприятного микроклимата достигается за счет правильного выбора места монтажа вентиляционных решеток и их линейных размеров.

Схематичное отображение всех элементов воздуховода

Сами системы рассчитываются методом постоянных скоростей и методом потери давления. Исходя из этих данных, подбираются размеры, тип и мощность вентиляторов, рассчитывается их количество, планируются места установки, определяются размеры воздуховода.

Онлайн расчёт воздуховодов

1. Расчёт ПРЯМЫХ УЧАСТКОВ прямоугольных воздуховодов

Высота, А (мм)

Ширина, В (мм)

Длина участка, L (м)

Толщина металла, t (мм) 0,4 0,5 0,55 0,6 0,7 0,8 0,9 1,0 1,2

Тип металла Оц. сталь Нерж.сталь

Тип соединительных элементов на торце Шина Рейка Нет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, руб

Экспорт в спецификацию

Запись

2. Расчёт ПРЯМЫХ УЧАСТКОВ круглых воздуховодов

Диаметр воздуховода, D (мм)

Длина участка, L (м)

Толщина металла, t (мм) 0,4 0,5 0,55 0,6 0,7 0,8 0,9 1,0 1,2

Тип металла Оц. сталь Нерж.сталь

Тип соединительных элементов на торце Фланец Ниппель Нет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, руб

Экспорт в спецификацию

Запись

3. Расчёт ОТВОДА для прямоугольных воздуховодов

Высота, А (мм)

Ширина, B (мм)

Угол поворота, α (°) 90 45 30

Толщина металла, t (мм) 0,4 0,5 0,55 0,6 0,7 0,8 0,9 1,0 1,2

Тип металла Оц. сталь Нерж.сталь

Тип соединительных элементов на торце Шина Рейка Нет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, руб

Экспорт в спецификацию

Запись

4. Расчёт ОТВОДА для круглого воздуховода

Диаметр воздуховода, D (мм)

Угол поворота, α (°) 90 45 30

Толщина металла, t (мм) 0,4 0,5 0,55 0,6 0,7 0,8 0,9 1,0 1,2

Тип металла Оц. сталь Нерж.сталь

Тип соединительных элементов на торце Фланец Ниппель Нет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, руб

Экспорт в спецификацию

Запись

5. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для прямоугольного воздуховода

Высота начальная, А (мм)

Ширина начальная, B (мм)

Высота конечная, a (мм)

Ширина конечная, b (мм)

Толщина металла, t (мм) 0,4 0,5 0,55 0,6 0,7 0,8 0,9 1,0 1,2

Тип металла Оц. сталь Нерж.сталь

Тип соединительных элементов на торце Шина Рейка Нет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, руб

Экспорт в спецификацию

Запись

6. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для круглого воздуховода

Диаметр начальный, D (мм)

Диаметр конечный, d (мм)

Толщина металла, t (мм) 0,4 0,5 0,55 0,6 0,7 0,8 0,9 1,0 1,2

Тип металла Оц. сталь Нерж.сталь

Тип соединительных элементов на торце Фланец Ниппель Нет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, руб

Экспорт в спецификацию

Запись

7. Расчёт ПЕРЕХОДА с круглого на прямоугольное сечение

Высота начальная, А (мм)

Ширина начальная, B (мм)

Диаметр конечный, D (мм)

Толщина металла, t (мм) 0,4 0,5 0,55 0,6 0,7 0,8 0,9 1,0 1,2

Тип металла Оц. сталь Нерж.сталь

Тип соединительных элементов на торце Шина-Фланец Рейка-Ниппель Нет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, руб

Экспорт в спецификацию

Запись

8. Расчёт ТРОЙНИКА для прямоугольного воздуховода

Высота главного воздуховода, А (мм)

Ширина главного воздуховода, B (мм)

Высота врезки, a (мм)

Ширина врезки, b (мм)

Угол врезки, α (°) 90 45

Толщина металла, t (мм) 0,4 0,5 0,55 0,6 0,7 0,8 0,9 1,0 1,2

Тип металла Оц. сталь Нерж.сталь

Тип соединительных элементов на торце Шина Рейка Нет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, руб

Экспорт в спецификацию

Запись

9. Расчёт ТРОЙНИКА для круглого воздуховода

Диаметр главного воздуховода, D (мм)

Диаметр врезки, d (мм)

Толщина металла, t (мм) 0,4 0,5 0,55 0,6 0,7 0,8 0,9 1,0 1,2

Тип металла Оц. сталь Нерж.сталь

Тип соединительных элементов на торце Фланец Ниппель Нет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, руб

Экспорт в спецификацию

Запись

Типы воздуховодов

Прямоугольные воздуховоды

Круглые воздуховоды

Одной из основных составляющих любой вентиляционной системы служит воздуховод, представляющий собой конструкцию в виде трубопровода, служащую для передвижения воздуха. В системе воздуховодов имеются прямые участки и фасонные части, которые влияют на направление движения воздушных потоков, а также на их соединение и разделение. К его выбору рекомендуется подходить основательно, в зависимости от индивидуальных параметров вашей системы и условий, в которых они будут применяться. Попробуем разобраться в многообразии видов воздуховодов, ведь от этого зависит Ваш выбор.

Для начала рассмотрим внешний вид воздуховодов. Их можно классифицировать по форме сечения. Подразделяются на:

  • прямоугольные
  • круглые

Также воздуховоды подразделяются в зависимости от материала, из которого они изготовлены. Бывают из:

  • оцинкованной стали
  • нержавеющей стали
  • алюминия

По конструкционному исполнению выделяют:

  • прямошовные
  • спиральные

По способу соединения:

  • фланцевые
  • соединение при помощи шины и уголка
  • реечные

Поговорим о различных формах воздуховодов.

Воздуховоды с прямоугольным сечением

Рассмотрим воздуховоды с прямоугольным сечением. Их используют в зданиях промышленного значения и жилых помещениях. Монтаж таких воздуховодов достаточно прост, при этом обеспечивается необходимый уровень герметичности. Однако стоимость их в с сравнении с круглыми может быть дороже на 20-30%. Время монтажа прямоугольных каналов также занимает больше времени, чем круглых из-за необходимости делать и скреплять фланцы.

 

Основные виды комплектующих для воздуховодов с прямоугольным сечением

Прямой участок воздуховода
        

На прямоугольных участках можно выбрать высоту, ширину и длину воздуховода (с учетом технологических ограничений).

Диапазон размеров:

  • от 100×100 мм до 2000×2000 мм
  • длиной до 2500 мм  (обычно длина 1250 мм)
  • толщина от 0,55 мм до 1,0 мм

Вентиляционный отвод на 90⁰ и 45⁰
 

Используется при необходимости изменения направления воздуховодов. Такой элемент является одним из самых необходимых при монтаже любого объекта.

Для заказа существует условное обозначение:

A — размер канала (мм)

B — размер канала (мм)

L1 — длина шейки (мм)

L2 — длина шейки (мм)

R — радиус (мм)

Для стандартных отводов L1= L2 не указывать.

Радиус поворота (R) — любой

Установка направляющей воздушного потока.

Диапазон размеров:

от 100×100 мм до 1200×2000 мм:

Отвод вентиляционный из оцинкованной стали толщиной от 0,55 мм до 1,0 мм,

Отвод вентиляционный из нержавеющей стали толщиной от 0,5 мм до 0,8 мм.

Возможно любое соотношение размеров ( с учетом технологических ограничении ).

Размер канала (мм) — A

Размер канала (мм) — B

Длина шейки (мм) — L1

Длина шейки (мм) — L2

Радиус (мм) – R  (с учетом технологических ограничений)


Переход на прямоугольное сечение
 

Возможность перейти с одного размера сечения на другое. По желанию можно даже изменить прямоугольное сечение на круглое. Без таких элементов практически невозможно выполнить быстро и качественно монтаж, поскольку изготовление таких деталей занимает достаточно много времени.

Для заказа существуют условные обозначения:

— ширина (мм) 
B — высота (мм)
C — ширина (мм)
D — высота (мм)
L — длина (мм)
E — смещение по стороне А (мм)
F — смещение по стороне В (мм)

Возможно любое соотношение размеров (с учетом технологических ограничений)

Прямоугольный вентиляционный тройник

                 

При необходимости разветвления воздуховодов используют такую типовую фасонную деталь, как прямоугольный вентиляционный тройник. Он является многофункциональным так как позволяет также обойтись без переходников с одного сечения на другое. Альтернативным решением может быть использование врезок в боковую часть воздуховода.

 

Для заказа существует условное обозначение:

A1 — Ширина (мм)
A2 — Ширина (мм)
A3 — Ширина (мм)
B — Высота (мм)

При заказе нестандартных вентиляционных тройников указываются следующие размеры: 
H — Высота (мм)
L — Длина (мм)
R – Радиус

Крестовина вентиляционная прямоугольная
 

Также можно использовать прямоугольный участок воздуховода с установленными в него врезками, называемый крестовиной. Они служат    для присоединения четырех либо трех воздуховодов одновременно. Сечение и число врезок могут быть разными. В крестовине врезки можно расположить под разным углом. Воздуховоды нужно монтировать в разных направлениях для обеспечения правильного потока воздуха.

Вместо крестовины часто также используют тройник и дополнительную врезку.
Стандарт длины прямоугольной крестовины: L = a + 200 мм

Заглушка торцевая

    

Такая деталь, как заглушка, применяется при перекрытии находящейся в конце системы фасонной детали или торца воздуховода. Ее использование позволит уменьшить аэродинамический шум и увеличить герметичность системы.

 

В заказе указывают:

A — ширина (мм)
B — высота (мм)
— длина (мм)

Соотношение размеров может быть разным (учитывая технологические ограничения). Возможно любое соотношение размеров (с учетом технических ограничений)

Утка прямоугольная
       

Если Вы хотите изменить уровень воздуховода, рекомендуем применять вентиляционную утку. Она осуществляет небольшое смещение, когда прямая прокладка воздуховода невозможна. Например, при обходе каких-либо препятствий под потолком – поперечно проходящие трубы или бетонные балки. Альтернативным решением для изготовления утки служит использование двух полуотводов по 30⁰ или 45⁰.

Для заказа нужно указать:

A — высота (мм)
B — ширина (мм)
L — длина (мм)
S — смещение (мм)

Также можно использовать любое соотношение размеров (учитывая технологические ограничения).


Прямоугольная врезка
      


Такая деталь, как прямоугольная врезка используется при монтаже в одну из сторон воздуховода (в нем проделывают отверстие). Ее прикрепляют механическим путем, используя заклепки и саморезы. Также учитывается, что сторона отверстия для врезки должна быть меньше стороны воздуховода (мин. на 50 мм.). Между воздуховодом и врезкой используют силиконовое уплотнение. Их применяют в местах разветвления потока. По сути это тот же тройник, только сделанный по месту.

 

При заказе выбирается:

A — ширина (мм)
B — высота (мм)
L — длина (мм)

Дроссель клапан

Для изготовления используется оцинкованная сталь. Он состоит из патрубка, полотна и сектора управления. Так называемая лопатка, располагающаяся с внешней стороны клапана, устанавливается на узел управления. При помощи рукоятки ее можно поворачивать. Под необходимым углом при помощи лопатки перекрывается сечение клапана. Лопатку фиксируют гайкой-барашком. При помощи градуированной шкалы устанавливают угол ее поворота. Дроссель-клапаны рекомендуется использовать на главных магистралях или в месте разветвления воздуховода. Помимо этого, в большинстве случаев без дроссель-клапанов невозможно отбалансировать систему и выставить необходимые расходы воздуха на решетках, поэтому очень важно ставить их в нужных местах.

 

Зонт крышный
 

В системах вентиляции с механическим и естественным побуждением используют прямоугольные или круглые зонты с креплением на фланцах из уголка или шины, чтобы атмосферные осадки не проникали в вентиляционные шахты. Такой зонт служит конечным элементом практически для любой вентиляционной системы стоящей вертикально.

Пленумы вентиляционные


 

Для добавления с улицы свежего воздуха к циркулирующему потоку используют вентиляционный пленум. Представляет собой специальное воздухозаборное устройство в виде короба с двумя входами. Также в нем есть выход для воздушного потока. Пленум может перемещать холодный, нагретый и свежий воздух. 

Вентиляционный адаптер

   

Вентиляционный адаптер – используется для присоединения вентиляционных решеток квадратного или прямоугольного сечения. (300х300; 450х450; 600х600). Закрепить распределительную решетку, например 450х450мм к воздуховоду D160 просто невозможно без адаптера. Помимо этого, при помощи адаптера устраняются вихревые эффекты на выходе из вентиляционных решеток. 

Шибер

В системе вентиляции не обойтись без запорно-регулирующего устройства, именуемого шибером, состоящим из стального полотна и направляющей панели. Размеры его зависят от размера воздуховода. Его изготавливают из тонколистовой оцинкованной  стали толщиной от 0,55 до 1 мм. (зависит от сечения и диаметра детали). Подразделяются на прямые (в системах аспирации и пневмотранспорта) и косые (в системах общеобменной вентиляции) шиберы. При этом давление в системе не должно превышать 1000 Па. Основная функция – регулировка воздушного потока.

Гибкие вставки для воздуховодов

Для устранения вибрации различного оборудования (как правило вентиляторы) используют гибкие вставки для воздуховодов, изготавливаемые из износостойкого материала «робаст», прикрепляемый к посадочным элементам из оцинкованной стали. Прямоугольные гибкие вставки на фланцах из шины бывают длиной 150 и 240 мм.(или изготавливаются под размер на заказ) Также Вы можете подобрать необходимый размер сечения.

Воздуховоды круглого сечения

Воздуховоды круглого сечения подразделяются на спирально-навивные и прямошовные. Они могут использоваться в общеобменной, приточно-вытяжной вентиляции, а также в системах пневмотранспорта и аспирации.

Рассмотрим преимущества и недостатки каждого из этих видов.

ПараметрыСпирально-навивные  
воздуховоды
 Прямошовные  
воздуховоды

Время на изготовление

+ _

Легкость изготовления

+ _
Стоимость изготовления + _
Примение в системах аспирации и невмотранспорта _ +

Установка на разрежение системы

_ +

Жесткость

_ +

Прочность

_ +

Износостойкость

_ +

Расчет стоимости

+ _

Основные комплектующие воздуховодов с круглым сечением

Отвод вентиляционный 90⁰

   


Отвод вентиляционный 60⁰

  


Отвод вентиляционный 45⁰

  


Отвод вентиляционный 30⁰

     

Отвод вентиляционный 15⁰

  

Для заказа существует условное обозначение:
d — диаметр  (мм) 

α — угол поворота ° 
R — радиус поворота (мм) 

При R=d — не указывается R =1 x d 
В стандартном отводе радиус поворота равен его диаметру. Радиус при необходимости, может быть любой.

Перейти в каталог воздуховодов

Перейти


Переход вентиляционный круглый

   Центральный                            Односторонний                         Со смещением

      


Используется для сужения или расширения сечения воздуховода. Обойтись без такого изделия на объекте крайне сложно, поскольку изготовление перехода достаточно сложный и долгий процесс, если делать это вручную при монтаже.

При заказе указывают малый и большой диаметры. Если заказ нестандартный, то также указывается длина и смещение (для переходов со смещением).

d1 — диаметр (мм)
d2 — диаметр (мм)

При заказе нестандартной длины, указать: 

Длина (мм) — L
Смещение (мм) — С


Круглый вентиляционный тройник

Первый тип:

Используется для разветвления потоков воздуха. Иногда чтобы сэкономить заказывают вместо тройников – врезки и делают ответвление на месте, но такой способ занимает больше времени в монтаже.

Существует условное обозначение для заказа:

d1 — диаметр (мм)
d2 — диаметр (мм)
L — длина (мм)
Н — высота (мм)

Возможно любое соотношение размеров (с учетом технических ограничений)


Второй тип:

Существует условное обозначение для заказа:

d1 — диаметр (мм)
d2 — диаметр (мм)
L — длина (мм)
α — угол 

Возможно любое соотношение размеров ( с учетом технологических ограничений).

Третий тип:

Существует условное обозначение для заказа:

d1 — диаметр (мм)
d2 — диаметр (мм)
d3 — диаметр (мм)
— длина (мм)
α — угол 

Возможно любое соотношение размеров ( с учетом технологических ограничений).


Четвертый тип:

Иногда приходится делать ответвление прямоугольного сечения. Это бывает нужно например для присоединения небольших прямоугольных распределительных решеток, которые вставляются в канал.

Существует условное обозначение для заказа:

d — диаметр (мм)
H — высота (мм)
A×B — размер врезки (мм)
n — фланец: 20 (мм), 30 (мм), (без фланца: 0) 
L — длина (мм)

Возможно любое соотношение размеров ( с учетом технологических ограничений).

Крестовина вентиляционная круглая

 

Для стандартной детали:
Н2 = Н3 − 0.5d1 + 50 (мм)

Если l > (d2 + d3) / 2 + 120 (мм), то есть возможность рассмотреть использования двух тройников. Обычно такие изделия не заказывают заранее, а изготавливают на месте с помощью тройников.

Существует условное обозначение для заказа:

d1 — диаметр корневой (мм)
d2 — диаметр (мм)
d3 — диаметр (мм)

Высота (мм) — H23
— длина детали (мм)
Если l = 0, — не указывать
— расстояние между врезками (мм) 
α — угол между врезками от d3 к d2, °

Возможно любое соотношение размеров ( с учетом технологических ограничений).


Ниппель вентиляционный круглый

     

Служит для соединения между собой воздуховодов одного диаметра. Воздуховоды одним простым движением вставляются с разных сторон ниппеля. Без ниппелей бывает крайне неудобно соединять трубы, поскольку приходится вальцевать («делать цветочек») и вставлять одну в другую. Выглядит некрасиво и делать неудобно.

Существует условное обозначение для заказа:

d — диаметр (мм)

Общая длина ниппеля вентиляционного:

до Ø 500 — 140 (мм)
до Ø 900 — 180 (мм)
до Ø 1250 — 200(мм)


Муфта вентиляционная круглая

 

Соединяет фасонные изделия и воздуховоды. Изготовлена из оцинк. стали. В отличие от ниппеля одевается сверху на скрепляемые детали. На маленьких диаметрах их как правило не используют, а нарезают из кусков трубы, но на больших диаметрах (больше 400мм)  бывает значительно дольше резать трубу на месте, поэтому выгоднее их заказать заранее.

 Существует условное обозначение для заказа:

d — диаметр (мм)

Каждому диаметру соответствует определенная длина муфты L–мм. (См. приложение 1).

Заглушка вентиляционная круглая

 

Является концевым элементом системы, чтобы перекрыть сечение канала.

 Необходимо при заказе:

d — диаметр (мм)

От 100 до 1250 мм.

Также есть возможность выбрать любой диаметр и длину и изготовить с ручкой в торце.


Утка вентиляционная круглая

 

Является фасонным изделием и используется в местах стыков разноуровневых воздуховодов. Также можно использовать при стыке воздуховодов, находящихся левее или правее друг друга. Также можно вместо утки обойтись использованием двух отводов по 30 или 45 градусов.

 

При заказе указывают:

d1 — диаметр (мм)
d2 — диаметр (мм)
— длина детали (мм)
— высота (мм).

Если d1= d2, то указывают один размер

 Также есть возможность использовать любые размеры (с учетом технологических ограничений).

Дроссель-клапан для воздуховодов круглого сечения

Для изготовления используется оцинкованная сталь. Он состоит из патрубка, полотна и сектора управления. Так называемая лопатка, располагающаяся с внешней стороны клапана, устанавливается на узел управления. При помощи рукоятки ее можно поворачивать. Под необходимым углом при помощи лопатки перекрывается сечение клапана. Лопатку фиксируют гайкой-барашком. При помощи градуированной шкалы устанавливают угол ее поворота. Дроссель-клапаны рекомендуется использовать на главных магистралях или в месте разветвления воздуховода.

Очень важно правильное расположение и количество дроссель-клапанов, чтобы можно было грамотно отбалансировать систему и выставить нужные расходы по веткам.

Зонт крышный для круглого воздуховода

 

Защищает воздуховод от попадания атмосферных осадков. Используется как правило на вертикально установленных вытяжных трубах.

 

Для заказа используют:

d — диаметр (мм) (от 100 до 710 мм)

От d зависит D и высота H.


Врезка вентиляционная круглая

      

Фасонная деталь, устанавливается в стенках воздуховодов. Используется вместо тройника с целью разветвления потока. Занимает несколько больше времени при монтаже, чем тройник, но стоит дешевле и дает возможность установить где угодно.  

Существует три вида:

  • Для вмонтирования в воздуховод прямоугольного сечения воздуховод круглого сечения 
  • Для присоединения круглых воздуховодов
  • Для угловых воздуховодов

 

При заказе указывают:

d — диаметр от 100 до 1250 мм
I— длина 40, 60, 80, 100 мм,

также для при необходимости

H — высота  (не менее 50 мм)
α — угол, °

 

Также возможно использование любых соотношений размеров (с учетом технологических ограничений).


Узел прохода через кровлю воздуховодов

 

Применяется в местах вывода на кровлю вентиляционной шахты. Главной задачей узла прохода является герметизация проходного отверстия.

 

При заказе указывают:

d — диаметр 100 – 400 мм
H — высота (мм).
α — угол °

 

Также возможно использование любых соотношений размеров (с учетом технологических ограничений).

Шибер вентиляционный круглого сечения

Запорно-регулирующее устройство. Изготавливается из тонколистовой оцинкованной стали. Подразделяются на прямые (в системах аспирации и пневмотранспорта) и косые (в системах общеобменной вентиляции) шиберы. При этом давление в системе не должно превышать 1000 Па. Основная функция – регулировка воздушного потока. 


Гибкие вставки круглого сечения для воздуховодов

Устраняют вибрацию при присоединении мощного оборудования, например радиальных вентиляторов или вентиляционных установок, чтобы шум от вибрации не передавался в систему воздуховодов.

Используют от 100 до 1600 мм.


Обратный клапан

  

Устанавливается в воздуховодах круглого сечения. Цель ограничить возможность обратной тяги. То есть обратный клапан пропускает поток воздуха только в одну сторону, в обратную поток воздуха невозможен.

 Изготавливают из оцинкованной листовой стали. Его можно установить в вертикальном положении.

 

При заказе указывают:

А (мм)

В (мм)

С (мм)

D (мм)

Получить бесплатную консультацию инженера по воздуховодам

Получить!
ГОСТ 8468-81 Воздуховоды систем вентиляции и кондиционирования воздуха судов. Основные размеры, ГОСТ от 17 февраля 1981 года №8468-81


ГОСТ 8468-81

Группа Д45

ВОЗДУХОВОДЫ СИСТЕМ ВЕНТИЛЯЦИИ
И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА СУДОВ

Основные размеры

Air ducts of ship ventilation and air
conditioning systems. Main dimensions



Срок действия с 01.01.1983
до 01.01.1998*
________________________________
* Ограничение срока действия снято
по протоколу N 7-95 Межгосударственного Совета
по стандартизации, метрологии и сертификации
(ИУС N 11, 1995 год). — Примечание «КОДЕКС».



ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 17 февраля 1981 г. N 795

ВЗАМЕН ГОСТ 8468-66

1. Настоящий стандарт устанавливает условные проходы и наружные размеры поперечных сечений круглых и прямоугольных воздуховодов, деталей их соединений и патрубков арматуры и оборудования (далее — воздуховодов) систем вентиляции и кондиционирования воздуха, а также патрубков механизмов, приборов, аппаратов, контейнеров и других изделий, к которым присоединяются воздуховоды указанных систем кораблей, судов и плавсредств.

Стандарт полностью соответствует СТ СЭВ 254-76.

2. Наружные размеры круглых () и прямоугольных () воздуховодов в зависимости от условных проходов должны соответствовать указанным в таблице.

мм

Условный проход



32

36


40*

44


50

56


80

86

65х95

100

106

65х145

125

131

85х165
105х135

150

156

85х255
105х205

175*

181

85х355
105х255
125х215

200

206

105х355
125х285
156х226

250

256

156х356
196х286

300

306

156х536
196х396

350

356

196х556
247х427

400

406

247х557
300х470

450*

460

300х590

500

510

300х740
360х610

600

610

360х890
430х720

700*

710

510х820

800

810

510х1130
640х860

900*

910

720х960

1000

1010

640х1410
810х1070

1200

1200

1120х1120

1400

1400

900х1800


Примечание. Условные проходы, обозначенные знаком «*», при новом проектировании применяют в обоснованных случаях и по согласованию с базовой организацией по стандартизации.

3. Толщины стенок воздуховодов в зависимости от условных проходов приведены в рекомендуемом приложении.

ПРИЛОЖЕНИЕ (рекомендуемое). Толщина стенок воздуховодов

ПРИЛОЖЕНИЕ
Рекомендуемое


мм

Условный проход

Толщина стенок

От 32 до 700

1,0-3,5

Свыше 700

2,0-5,0


Примечания:

1. В обоснованных случаях толщина стенок может быть уменьшена до 0,5 мм.

2. Прямоугольные воздуховоды 300 и выше рекомендуется снабжать ребрами жесткости.

3. Указанные толщины стенок рекомендуется при избыточных давлениях до 0,07 МПа для круглых и до 0,03 МПа для прямоугольных воздуховодов.



Текст документа сверен по:
официальное издание
М.: Издательство стандартов, 1981

Пластиковые воздуховоды для вентиляции: виды, параметры, область применения

Строительная отрасль считается одной из наиболее активно развивающихся. Новые технологии и материалы постепенно вытесняют традиционные. Например, все более активно используются пластиковые воздуховоды вместо металлических. 

Воздуховоды из пластика: из каких материалов делают

Содержание статьи

Под словом «пластик» скрывается целая группа материалов с разными свойствами и эксплуатационными характеристиками. Вентиляционные короба делают из таких пластмасс:

  • ПВХ (поливинилхлорид). Имеет широкий температурный режим эксплуатации от -30°С до +70°С. Воздуховоды ПВХ могут устанавливаться в неотапливаемых помещениях.
  • ПВДФ (фторопласт). кислотостойкий материал с широким температурным диапазоном — от -40°С до +140°С. Пример вентиляции из пластиковых вентиляционных труб в ванной

    Пример вентиляции из пластиковых вентиляционных труб в ванной

  • ПП (полипропилен). Отличается повышенной стойкостью к химическим воздействиям (переносит кислоты, щелочи, органику).
  • ПНД (полиэтилен низкого давления). Этот материал отличается повышенной гибкостью, его сложнее повредить механически, но не переносит низких температур.

При выборе пластиковых воздуховодов стоит ориентироваться на характеристики пластмасс. Например, для подключения кухонной вытяжки лучше использовать полипропиленовые воздуховоды. Если температура отводимого воздуха высокая, подходят воздуховоды ПВХ или ПВДФ. Для разводки вентиляции по жилым и остальным техническим помещениям вполне подойдут короба из полиэтилена.

Плюсы и минусы, область применения

Пластиковые воздуховоды многими воспринимаются негативно, так как они не уверены в том, что пластик не выделяет вредных веществ во время эксплуатации. Возможно, некачественный пластик и небезопасен, но даже в бытовой технике столько пластиковых деталей, что это соображение кажется неактуальным. Например, в кухонной вытяжке с фильтрами большая часть составляющих сделана из пластика. А тут самые тяжелые условия эксплуатации — повышенная температура, большое количество жира, испарения химически активных веществ.

Даже открытая прокладка пластиковых труб не портит внешнего вида

Даже открытая прокладка пластиковых труб не портит внешнего вида

Вообще, специалисты рекомендуют ставить пластик на вытяжные вентканалы. Тут ограничений нет. А вот на приток — нужны термостойкие, выполненные из специального пластика. Особенно, если приток с подогревом или рекуперацией.

Где можно использовать

Еще одно соображение, по которому не рекомендуют использовать пластиковые воздуховоды — проблемы с пожарной службой. Бывали случаи, что не подписывали разрешение на использование газового оборудования, если вентиляция сделана из пластика. Но это был каркасный дом, а там требования другие. Если есть сомнения, лучше уточнить у местного пожарного инспектора. А вообще, есть рекомендации в нормативных документах.

Выдержка из СНиП 41-01-2003

Выдержка из СНиП 41-01-2003

Согласно СНиП 41-01-2003 пункт 7.11 пластиковые воздуховоды можно использовать в малоэтажных жилых, общественных, административно-бытовых и производственных зданиях категории Д. Их нельзя укладывать в подвалах, подпольях, на чердаках и технических этажах, в помещениях с нормируемыми условиями противопожарной безопасности.

Достоинства и недостатки

У пластиковых воздуховодов есть как приверженцы, так и противники. Их главные недостатки:

  • Горючесть. Тут все понятно. Не распространяют огонь только металлические воздуховоды. Хотя не все пластики горят и распространяют горение, но такие материалы с «пониженной» горючестью стоят дорого. Потому пластиковые воздуховоды разрешены только в одноэтажных домах.
  • Накопление статического заряда, что приводит к налипанию пыли (она снова-таки может вспыхнуть). По факту, на гофрированных участках пыли скапливается намного больше. Чтобы уменьшить ее количество, монтировать пластиковый воздуховод надо после завершения «пыльных» строительных работ и устанавливать фильтры, которые отлавливают большую часть пыли. Кроме того пластиковые вентиляционные трубы обрабатываются специальным составом. Он образует на поверхности пленку, которая препятствует накоплению статического заряда. Пример использования пластиковых воздуховодов для подключения кухонной вытяжки

    Пример использования пластиковых воздуховодов для подключения кухонной вытяжки

  • При низком качестве изготовления, тонких стенках или при большом сечении, из-за изменения геометрии в местах стыков могут образовываться зазоры. Это можно исправить, но такой недостаток есть.

Это минусы использования пластиковых воздуховодов. Достоинств более чем достаточно:

  • Простой монтаж. Наличие фитингов и фасонных элементов позволяет создать систему любой конфигурации. Пластик легко режется, мало весит.
  • За счет идеально гладких стенок воздух встречает меньшее сопротивление.
  • Проще обеспечить герметичность. Для надежности стыки можно промазать герметиком.
  • Современные пластиковые воздуховоды стыкуются при помощи замков «встык» без нахлестов, что уменьшает сопротивление при движении воздуха.
  • Низкий уровень шумов. При производительности до 100 куб/мин движение воздуха почти бесшумное.
  • Не подвержены коррозии. Вот такой набор фасонных элементов позволяет составить из пластиковых труб систему вентиляции любой сложности

    Вот такой набор фасонных элементов позволяет составить из пластиковых труб систему вентиляции любой сложности

В общем, пластиковый воздуховод — не идеальное решение, но легкость монтажа и хорошие эксплуатационные характеристики перевешивают недостатки. Вообще, специалисты рекомендуют ставить пластик на вытяжные вентканалы. Тут ограничений нет. А вот на приток — нужны термостойкие, выполненные из специального пластика. Особенно, если приток с подогревом или рекуперацией.

Также при подборе стоит исходить из условий эксплуатации. Например, на вытяжной вентканал из влажных помещений имеет смысл использовать именно пластиковый воздуховод, так как оцинкованные подвержены коррозии, а нержавеющие стоят уж очень дорого.

Сечение пластиковых воздуховодов и их размеры

Пластиковые короба для вентиляции делают:

  • Круглого сечения.
  • Прямоугольного сечения (прямоугольники и квадраты).

Каждый видов бывает жесткий и гибкий. Жесткие короба отливаются в специальных формах. Их основная характеристика (кроме геометрических размеров) — толщина стенки. Чтобы пластиковый воздуховод держал форму, толщина стенки должна быть 3 мм. Более тонкие гнуться, у толстостенных больше вес и значительно выше цена.

Второй вид — гибкие пластиковые воздуховоды. Делаются в виде гофры. Проволочный каркас обволакивают слоем пластика так что сама проволока оказывается запаянной в пластике. Такие воздуховоды проще монтировать, так как можно изогнуть под любым углом.

Полужесткие гофрированные воздуховоды

Полужесткие гофрированные воздуховоды

Длинна одного куска гофрированной пластиковой трубы для вентиляции трубы — до 2,5 метров, так что короткие трассы можно сделать исключительно из одного цельного куска. Монтаж очень простой: закрепили с обоих концов, выложили по трассе, закрепили в нескольких местах. Гофру желательно растягивать как можно сильнее — для уменьшения неровностей стен и сопротивления воздушному потоку.

Но, даже в хорошо растянутой гофре, за счет неровных стенок, движение воздуха затруднено. Потому, при равных условиях, гофрированные воздуховоды ставят большего размера. К тому же на неровной поверхности быстрее скапливается грязь, жир, пыль. Стенки — очень тонкие, имеют  совсем небольшую механическую прочность. Более надежны полужесткие варианты (как на фото выше). Они гнутся хуже, но имеют более высокую надежность.

Сечение круглых пластиковых воздуховодов

Самые распространенные круглые пластиковые воздуховоды:

  • 100 мм;
  • 125 мм;
  • 150 мм;
  • 200 мм. И круглые, и прямоугольные пластиковые воздуховоды могут быть больших размеров

    И круглые, и прямоугольные пластиковые воздуховоды могут быть больших размеров

Но есть и гораздо больших размеров — до 2,4 метров в диаметра — для производственных помещений. Продаются круглые вентиляционные трубы отрезками по 500 мм, 1000 мм, 1500 мм, 2000 мм, 2500 мм.

Сечение прямоугольных вентиляционных труб

Прямоугольные пластиковые воздуховоды для бытового применения бывают следующих размеров:

  • высота — 55 мм, 60 мм;
  • ширина — 110 мм, 122 мм, 204 мм;
  • длинна — 350 мм, 500 мм, 1000 мм, 1500 мм, 2000 мм и 2500 мм;
  • толщина стенки —  2-8 мм. Пример габаритов пластиковых прямоугольных труб для вентиляции

    Пример габаритов пластиковых прямоугольных труб для вентиляции

Чем большее сечение имеет пластиковая труба для вентиляции, тем толще делают ее стенки. Это необходимо для того, чтобы изделия не изменяли геометрические размеры. Для экономии на более коротких стенках (на рисунке а) толщина может быть меньшей (2-3 мм, к примеру), а более широкую часть (на фото обозначена b) делают утолщенной — 3-4 мм.

Что лучше: круглый или прямоугольный воздуховод?

Какой формы воздуховоды лучше? Круглые или квадратные? Если брать по пропускной способности, то лучше круглые. В них вихревые потоки встречают меньше сопротивления, движение воздушных масс более быстрое. В прямоугольных углы остаются практически незадействованными. Потому прямоугольные ставят с большей площадью сечения, чем круглые.

В таком варианте даже проложенный "по верху" вентканал почти незаметен

В таком варианте даже проложенный «по верху» вентканал почти незаметен

Несмотря на худшие характеристики, чаще используются прямоугольные трубы из пластика для вентиляции. Их проще спрятать, пустив низко над навесными шкафами, например. Также при обустройстве навесного или натяжного потолка они требуют меньшей высоты, так как есть модели плоские и широкие.  Даже если фальшпотолок не предусмотрен и спрятать вентканал негде, прямоугольный короб на стыке стены и потолка смотрится лучше, чем круглый.

Особенности монтажа

Монтаж пластиковых воздуховодов в разы проще, чем работа с металлическими. Резать пластиковые трубы для вентиляции можно ножовкой с полотном по металлу или болгаркой с режущим диском. В любом случае рез получается ровный, без заусенцев.

Вариант вентиляции в ванной комнате и туалете с использованием прямоугольных пластиковых труб для вентиляции

Вариант вентиляции в ванной комнате и туалете с использованием прямоугольных пластиковых труб для вентиляции

Фасонные элементы и крепление к стене и потолку

Для поворотов, разветвлений, сужений, расширений есть специальные фасонные элементы — углы, тройники, переходники. Переходники есть как с одного размера на другой, так и с круглого на прямоугольный. Это пригодится, например, при необходимости вставить вентилятор. Для стыковки двух труб есть муфты. Все собирается даже легче чем детский конструктор.

Пример вентиляции из круглых пластиковых вентиляционных труб

Пример вентиляции из круглых пластиковых вентиляционных труб

Крепятся трубы к стенам или потолку при помощи специальных хомутов. Они также сделаны из пластика, крепятся к потолку или стенам при помощи дюбелей или саморезов. В установленные хомуты трубы просто «защелкиваются».

Вместо пластиковых хомутов для крепления вентканалов можно использовать перфорированные подвесы для гипсокартона. Если монтируется прямоугольная пластиковая труба, их крепят двумя дюбелями/саморезами на расстоянии, равном ширине трубы. Оставшиеся края загибают вниз, саморезами крепят к боковине трубы. Этот способ более трудоемкий, но подвесы стоят дешевле. Но использование саморезов — не лучший выход. На них, на кусок винта, торчащий внутри воздуховода, через несколько лет налипнет пыль, что приведет к ухудшению тяги. Лет через 8-10 на месте каждого самореза образуется пробка из пыли. В результате вентиляция может вообще перестанет работать. Придется ее чистить.

Особенности сборки

Если необходимо крепить воздуховоды на потолке, их крупными участками собирают на полу, после — «примеряют» на потолке, размечают места установки крепежа. Закрепив два участка их соединяют между собой. Так собирается вся система. Действительно ничего сложного. Сложно спроектировать и подобрать размеры, а смонтировать воздуховод по готовой схеме можно самостоятельно без проблем.

Для обеспечения герметичности в системе, специалисты рекомендуют промазывать стыки герметиком. Рекомендуется нейтральный силиконовый герметик белого цвета. После высыхания он остается эластичным и не трескается от вибрации, компенсирует температурные расширения.

Если при стыковке двух элементов системы образуется «карман» — пластик плохо примыкает из-за несовпадения геометрических размеров, стык также промазывается герметиком, а потом заматывается специальным металлизированным скотчем. В таких случаях рекомендуют убрать «карман» подтянув его при помощи самореза. Делать это не стоит все по той же причине — на этом месте «вырастет» пылевая пробка, которая перекроет поток воздуха.

Прямоугольные воздуховоды — обычно используемые размеры

Обычно используемые размеры прямоугольных воздуховодов в вентиляционных системах вентиляции:

3)
Ширина
(мм)
Высота (мм)
100 150
200
250 300 400 500 600 800 1000 1200
200 1) 1) 2) 3) 3) 3) 3) 3) 3) 3) 3)
250 2) 2) 2) 2) 9 0045 3) 3) 3) 3) 3) 3) 3)
300 3) 1) 1) 1) 2) 2) 3) 3) 3) 3) 3) 3)
400 1) 1) 1) 2) 1) 2) 3) 3) 3) 3) 3)
500 3) 1) 1) 2) 1) 1) 2) 3) 3) 3) 3) 3)
600 3) 1) 1) 2) 1) 1) 1) 2) 3) 3) 3)
800 3) 3) 3) 1) 2) 1) 1) 1) 1) 90 045 2) 3) 3)
1000 3) 3) 3) 2) 1) 1) 1) 1) 1) 2) 3)
1200 3) 3) 3) 3) 1) 1) 1) 1) 1) 1) 1) 2)
1400 3) 3) 3) 3) 3) 2) 2) 2) 2) 2) 2)
1600 3) 3) 3) 3) 3) 1) 1) 1) 1) 1) 1)
1800 3) 3) 3) 3) 3) 3) 2) 2) 2) 2) 2)
2000 3) 3) 3) 3) 3) 3) 3) 3) 1) 1) 1)

1) Предпочитается, 2) Приемлемо, 3) Не распространено

.
Круглые воздуховоды — Размеры

Circular galvanized steel duct

Размеры круглых воздуховодов — Метрические единицы

Общие размеры круглых воздуховодов, используемых в вентиляционных системах обработки воздуха:

Номинальный диаметр
(мм)
Наружный диаметр
(мм) )
Внутренний диаметр
(мм)
63 63 — 63,5 61,8 — 62,3
80 80 — 80.5 78,8 — 79,3
100 100 — 100,5 98,8 — 99,3
125 125 — 125,5 123,8 — 124,3
160 160 — 160,6 158,7 — 159,3
200 200 — 200,7 198,6 — 199,3
250 250 — 250,8 248,5 — 249,3
315 315 — 315 — 315.9 313,4 — 314,3
400 400 — 401,0 398,3 — 399,3
500 500 — 501,1 498,2 — 499,3
630 630 — 631,2 628,1 629,3
800 800 — 801,6 798,0 — 799,3
1000 1000 — 1002,0 997,9 — 999,3
1250 1250 — 1252.5 1247,8 — 1249,3

Круглые оцинкованные стальные воздуховоды — Площади и вес — Имперские единицы

2.32 3.31 14.40 900 11 5932
Диаметр
(дюймы)
Площадь поверхности
(футы 2 футов)
Gage
26 24 22
Вес (фунт / фут)
4 1.05 1.02 1.36 1.59
5 1.31 1.25 1.67 1.95
6 1.57 1.49 1.98 2.32 2.32 2.32 2.32
2.32 2.32 1,83 1,72 2,30 2,69
8 2,09 1,96 2,61 3,06
9 2.36 2.20 2.93 3.42
10 2.62 2.51 3.91
11 2.88 2.74 3.66 4.28
12 3.14 2.98 3.97 4.64
13 3.40 3.21 4.28 5.01
14 3.67 3.45 4.60 5.38
15 3.93 3.68 4.91 5.75
16 4.19 3.92 5.231 6.12
17 4,45 4,16 5,54 6,48
18 4,72 4,39 5,85 6,85
19 4.98 4.63 6.17 7.22
20 5.24 4.94 6.58 7.70
21 5.50 5.18 6.90 8.07 9007 22 5.75 5.41 7.21 8.44
23 6.02 5.64 7.53 8.80
24 6.28 5.88 7.84 9.17
25 6.54 6.12 8.15 9.54
26 6.80 6,35 8,47 9,91
9,91 8,97 7,84 7,07 8,78 10,27 12,47
28 7,33 9,10 10,64 12,92
29 7.59 9.41 11.01 13.36
30 7.85 9.83 11.50 13.95
31 8.11 10.14 11.86 9000
8,38 10,45 12,23 30032 14,84
33 8,65 10,77 12,67 15.29
34 8.91 11.08 12.96 15.75
35 9.17 11.40 13.33 16.18
36 9.43 13.71 13.71 13.71 13.71 13.71 13.71 16,63
37 9.69 12.02 14.07 17.07
38 9.95 12.34 14.44 17.52
39 10.21 12.65 14.80 17.97
40 10.47 13.07 15.29 18.55
41 41 41 41 13,39 15,66 19,00
42 10,99 13,70 16,02 19,45
43 11.26 14.01 16.39 19.89
44 11.52 14.32 16,76 20,34
.
прямоугольных воздуховодов — гидравлический диаметр

Гидравлический диаметр для прямоугольных воздуховодов можно рассчитать как

d h = 2 ab / (a ​​+ b) (1)

, где

d h = гидравлический диаметр (мм, дюйм)

a = ширина канала (мм, дюйм)

b = высота воздуховода (мм, дюйм)

Гидравлический диаметр некоторых обычных прямоугольных каналов:

9035 ,
Найдите размеры прямоугольника

посетителем

Вопрос
Площадь прямоугольника составляет 45 кв. Если длина на 4 см больше ширины, каковы размеры прямоугольника?
Ответ
На рисунке ниже показан прямоугольник площадью 45 см 2 .Теперь пусть ширина будет w . Поскольку длина на 4 см больше ширины, длина будет Вт + 4 см. rectangle with the length w+4 and the width w
Прежде чем мы сможем найти размеры прямоугольника, нам нужно найти w . Вот как:

1) Напишите уравнение, которое относится к 45 см 2 , w + 4 и w .
Для этого мы знаем, что площадь прямоугольника 45 см 2 можно найти, умножив w на w + 4 . Следовательно, мы имеем:



Чтобы продолжить, нам нужно снять скобку и упростить уравнение.Это показано ниже:

2) Решите квадратное уравнение
Обратите внимание, что теперь у нас есть квадратное уравнение:


Чтобы найти w , нам нужно решить квадратное уравнение. Одним из способов сделать это является факторизация квадратного уравнения. Следовательно, мы имеем:

Теперь, так как w — это ширина прямоугольника. Не может быть отрицательного числа. Следовательно, w должно быть 5. При w = 5. …
… и … Ниже прямоугольник с его размерами:

rectangle with the length of 9cm and the width of 5cm ,
Размеры воздуховодов прямоугольных: виды, размеры, стоимость и монтаж

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Гидравлический диаметр — д ч (мм)
Ширина воздуховода
(мм)
Высота воздуховода (мм)
100 150 200 250 300 400 500 600 800 1000 1200
200 133 171 200
250 143 188 122 250
300 150 200 9003 9003 222 273 300
400 160 218 240 308 343 900
231 267 333 375 444 500
600 240 286 353 400 480 545 545 545 6005
800 300 381 436 533 615 686 800
1000 320 400 462 571 667 750 889 1000
1200 480 600 706 800 960 1091 1200
1400
622 737 840 1018 1167 1292
1600 640 762 873 1067 1231 1231 1331 1371 1800 783 900 1108 1286 1440
2000 800 923 1143 13 900 1500