Проверка igbt транзисторов мультиметром: Как проверить IGBT транзистор, принцип работы IGBT.

Транзисторы и их проверка мультиметром; как проверить тестером транзистор, не выпаивая

Радиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.

  • Типы транзисторов
    • Биполярные приборы
    • Полевые транзисторы
  • Проверка мультиметром
    • Приборы биполярного типа
    • Полевые транзисторы
  • Проверка приборов в схеме

Типы транзисторов

Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.

Биполярные приборы

Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.

Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.

Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области. Внутренняя область — база.

Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.

Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.

На схемах вывод эмиттера обозначается стрелкой, которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.

Полевые транзисторы

Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).

Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными.

Проверка мультиметром

Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.

Приборы биполярного типа

Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.

Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.

Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.

При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.

Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.

Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.

Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:

  • определение типа прибора и схемы его выводов;
  • проверка сопротивлений его «p — n» переходов в прямом направлении;
  • смена полярности щупов и определение сопротивлений переходов при таком подключении;
  • проверка сопротивления «коллектор — эмиттер» в обоих направлениях.

Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.

К признакам неисправности биполярных транзисторов можно отнести следующие:

  • «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
  • «p — n» переход не «прозванивается» в обе стороны.

В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.

Второй случай показывает внутренний обрыв в структуре прибора.

В обоих случаях данный экземпляр не может быть использован для работы в схеме.

Полевые транзисторы

Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.

Для проверки элемента первого типа необходимо выполнить следующие действия:

  • определить сопротивление участка «сток — исток» закрытого транзистора;
  • произвести открытие перехода;
  • определить сопротивление открытого полевика;
  • произвести закрытие перехода;
  • повторно сделать замер сопротивления закрытого полевого транзистора.

Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».

Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).

Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.

Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.

При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.

Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.

При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.

Проверка приборов в схеме

Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.

Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.

Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.

Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.

Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.

Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.

Как проверить транзистор мультиметром: инструкции, видео

Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.

С чего начать?

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

  1. Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
  2. Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
  3. Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
  4. Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
  5. Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.

Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Как проверить однопереходной транзистор

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.

Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Как проверить транзистор мультиметром, не выпаивая их схемы?

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Проверка IGBT с помощью мультиметра ПЛОХОЕ или хорошее состояние

Как проверить IGBT с помощью мультиметра, объясняется в этой статье. Если кто-то может использовать простой мультиметр и знает, как проверить диод, он также может легко проверить IGBT. Перед тестированием обратите внимание на клеммы IGBT, они имеют клеммы G, C и E. G = вентиль, C = коллектор, E = эмиттер. Некоторые модели IGBT имеют внутренний диод, подключенный к клеммам C и E. Большой ток и большой IGBT имеют тенденцию выходить из строя из-за замыкания и размыкания, поэтому перед тестированием всего процесса вы можете сначала проверить состояние замыкания и размыкания.



                                                               Разрядите IGBT, замкнув 3 клеммы вместе. Этот образец IGBT имеет расположение клемм как G G C E (соответственно 1-2-3).

Этап проверки IGBT с помощью мультиметра.

1. Разрядите IGBT, замкнув 3 клеммы. Используйте ножки резистора или другую аналогичную металлическую проволоку. После разряда не прикасайтесь ни к одному из его выводов и в процессе проверки всегда держите его за изолированную область или черный корпус. Удалите IGBT из цепи, прежде чем проводить какие-либо испытания.

2. Проверьте клеммы C и E, используя диапазон Rx1 кОм. Прикоснитесь к щупу и прочтите измеренное значение. Переключите измерительный провод и снова считайте измеренное значение. Хороший IGBT покажет некоторое сопротивление 1 раз и ∞ 1 раз. Защищенный IGBT укажет на 0 Ом 2 раза. Открытый IGBT будет указывать на ∞          2 времени.

                                                       Хороший IGBT укажет на некоторое сопротивление 1 раз .


                                     Хороший   IGBT  будет указывать         ∞   масштаб       1  раз 

3. Проверьте клеммы G и C, используя диапазон Rx10 кОм. Прикоснитесь к щупу и прочтите измеренное значение. Переключите измерительный провод и снова считайте измеренное значение. Good IGBT отобразится ∞  2   раза.

4. Проверьте клеммы G и E, используя диапазон Rx10 кОм. Прикоснитесь к щупу и прочтите измеренное значение. Переключите измерительный провод и снова считайте измеренное значение. Хороший IGBT будет отображаться ∞ 2   раза.

                                    


                                                            Проверьте клеммы G и C с помощью диапазона Rx10 кОм.

                                       Проверьте клеммы G и E  , используя диапазон Rx10 кОм.

Все этапы тестирования 1 , 2 , 3–4 должны быть в хорошем состоянии, чтобы IGBT был в хорошем состоянии. Если какой-либо из 1 шагов не пройден, значит, IGBT уже неисправен.

Простой  метод проверки IGBT – это срабатывание затвора.

Разрядите IGBT, замкнув 3 клеммы. Во время тестирования не прикасайтесь ни к каким клеммам и всегда держите IGBT за черный корпус. Подсоедините меньший провод, как показано на фото, затем используйте резистор для подачи напряжения срабатывания от клеммы C к клемме G. Исправный IGBT приведет к тому, что стрелка мультиметра переместится вперед и укажет на некоторое сопротивление. затем удалите резистор (напряжение срабатывания), IGBT по-прежнему будет пропускать ток, а указатель по-прежнему будет указывать на то же положение, когда затвор срабатывает.

Подключение тестового привода к тригеру от IGBT


После удаления напряжения триг.

Возможны ситуации в работе: поврежденный IGBT-модуль должен проанализировать причину отказа, или модуль с хорошим внешним видом должен оценить, нет ли каких-либо отклонений от нормы.

В работе бывают ситуации: поврежденный IGBT-модуль должен проанализировать причину отказа, или модуль с хорошим внешним видом должен оценить, есть ли какая-либо неисправность. При отсутствии специализированного оборудования можно использовать цифровые мультиметры в качестве обычного инструмента, помогающего нам быстро идентифицировать IGBT. В настоящее время обычно используются файл диода, файл сопротивления и файл емкости мультиметра. Стоит отметить, что тестовые данные мультиметра не универсальны и могут использоваться только в качестве справочных.

Структура модуля

В качестве примера возьмем обычный модуль IGBT в корпусе 62 мм. Внутренняя часть состоит из микросхемы IGBT (биполярного транзистора с изолированным затвором), микросхемы FWD (диода свободного хода), соединительного провода и т. д. Некоторые сильноточные модули должны быть объединены несколькими наборами микросхем. На рисунке 1 представлен модуль производителя на 400 А:

Модуль производителя на 400 А

Его электрическое соединение показано на рисунке 3. Верхний и нижний мосты модуля имеют 4 набора микросхем IGBT и FWD, соединенных параллельно через соединительную линию. Эквивалентный электрический символ показан на рис. 4: 9.0003

Электрическое соединение

Эквивалентный электрический символ

Методы измерения

1. Файл диода

С помощью файла диода можно измерить прямое падение напряжения VF обратного диода. Замкните затвор-эмиттер, соедините эмиттер с красной ручкой мультиметра, черную ручку соедините с коллектором, и нормальный модуль VF будет около 0,3 ~ 0,7 В. Если VF слишком велик, микросхема FWD или соединительный провод будут отключены. Короткое замыкание происходит в микросхеме FWD или IGBT.

Размер VF связан с прямым током IF. Как показано на рисунке ниже, существуют некоторые различия в сопротивлении и напряжении в тестовой цепи разных мультиметров, что приведет к различию результатов измерений. Поэтому это тестовое значение нельзя сравнивать с другими тестовыми значениями мультиметра. Он не может представлять данные в таблице данных. Это тестовое значение не имеет никакого другого значения. Его можно использовать только для определения того, является ли чип FWD хорошим или плохим.

VF control

2. Файл сопротивления

(1) Измерьте сопротивление между коллектором и эмиттером каждой трубки IGBT в модуле, замкните затвор-эмиттер, красная ручка мультиметра подключена к коллектору, черный индикатор подключен к эмиттеру, а нормальное значение сопротивления модуля, как правило, выше уровня мегаом.

(2) Измерьте сопротивление между затвором-эмиттером (затвор-коллектор) каждой трубки IGBT в модуле. Красный и черный щупы мультиметра подключены к затвору и эмиттеру (затвор и коллектор) соответственно, и нормальный модуль тоже показывает высокое сопротивление. Когда плата драйвера подключена к модулю, сопротивление затвор-эмиттер равно сопротивлению продувки, обычно несколько тысяч Ом.

Из-за диапазона измерения мультиметра некоторые мультиметры не могут отображать действительные значения для вышеуказанных измерений высокого сопротивления. Конечно, когда тестовое значение имеет высокий импеданс, это не означает, что модуль в порядке. Вышеупомянутый метод работы оказывает определенное влияние на определение неисправного модуля, но вероятность успеха не очень высока, и также требуется результат измерения емкости.

3. Файл конденсатора

Измерительный механизм мультиметра настроен на файл конденсатора, красная ручка подключена к затвору, черная ручка подключена к эмиттеру, а внутренняя емкость между затвором и эмиттером IGBT в модуле измеряется, данные измерений записываются, а затем заменяется тестовая ручка, то есть черная. Ручка счетчика подключается к воротам, красная ручка подключается к излучателю, и измеренные данные записываются. Емкость модуля варьируется от нескольких нФ до нескольких десятков нФ. Наконец, данные сравниваются с другими микросхемами IGBT в модуле, измеренными мультиметром, или с данными измерений того же производителя и того же типа модуля, и значения должны быть одинаковыми или похожими.

Во время измерения рекомендуется измерять только емкость между затвором и эмиттером. Cies в микросхеме IGBT самые большие, Ces и Coes намного меньше, чем Cies, см. рис. 6 и 7, а точность мультиметра для измерения емкости ограничена.

Дополнительно:

(1) Подобно прямому падению напряжения VF, испытательное значение здесь отличается от испытательного значения условий испытания в техническом паспорте и может использоваться только в качестве эталонного сравнения.

(2) Если плата драйвера подключена к модулю, это повлияет на результат измерения емкости, и ее следует удалить в первую очередь.

Точность мультиметра для проверки емкости ограничена

Резюме

Простая сводка цифрового мультиметра для определения качества IGBT выглядит следующим образом:

Шаг

Положение передачи

Показать результат

Результат дискриминанта

1

Диодный файл

Падение давления FWD 0,3~0,7 В

Чип FWD нормальный

Падение давления слишком мало

Короткое замыкание чипа FWD или IGBT

Падение давления слишком большое

Разрыв стружки FWD или разрыв линии соединения

2

Файл сопротивления

Rce, Rge, Rgc состояние высокого сопротивления

CE, GE, GC не закорочены

Rce, Rge, Rgc Состояние низкого сопротивления

Пробой CE, GE, GC или короткое замыкание

3

Файл конденсатора

Значение Cies составляет от нескольких нФ до десятков нФ

Обычная дверь

Нет значения или отклонение контрастности

Поломка или отсоединение двери

Примечание: 

1.

Проверка igbt транзисторов мультиметром: Как проверить IGBT транзистор, принцип работы IGBT.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *