Проверить тиристор мультиметром: Как проверить тиристор мультиметром на примере прозвона ку202н

Содержание

Как проверить тиристор мультиметром на примере прозвона ку202н

Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.

Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:

  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания

. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Тестирование высоковольтного тиристора

В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.

Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.

Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.

Как проверить тиристор мультиметром + видео

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:

  1. Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм. Рис 3. Измеряем сопротивление между УЭ и К
  2. Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
  3. Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.
Рис 4. Измеряем сопротивление перехода  Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).

Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.

Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Как проверить тиристор мультиметром: виды, тестирование, инструкция, питание

Прежде потрудитесь узнать, как работает тиристор. Заимейте представление о разновидностях: триак, динистор. Требуется правильно оценить результат теста. Ниже расскажем, как проверить тиристор мультиметром, даже приведем небольшую схему, помогающую выполнить задуманное в массовом порядке.

Разновидности тиристоров

Тиристор

Тиристор отличается от биполярного транзистора наличием большего количества p-n переходов:

  1. Типичный тиристор p-n переходов содержит три. Структуры с дырочной, электронной проводимостью чередуются на манер зебры. Можно встретить понятие n-p-n-p тиристор. Присутствует или отсутствует управляющий электрод. В последнем случае получаем динистор. Работает по приложенному меж катодом и анодом напряжением: при некотором пороговом значении открывается, начинается спад, ход электронам отсекается. Что касается тиристоров с электродами, управление производится в любом из двух срединных p-n переходов – стороны коллектора, либо эмиттера. Коренное отличие изделий от транзистора в неизменности режим после пропадания управляющего импульса. Тиристор остается открытым, пока ток не упадет ниже фиксированного уровня. Обычно называют током удержания. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы отличаются количеством p-n переходов, становится больше минимум на один. Способны пропускать ток в обоих направлениях.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

  • катод;
  • анод;
  • управляющий электрод (база).

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:

  1. Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
  2. Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.

    Схема проверки тиристора

  3. Тиристор образует центр схемы. Лучше спаять гнезда, куда можно быстро воткнуть новый испытуемый образец. Иначе пропадает смысл городить огород. Обратите внимание, схема собрана для случая, когда тиристор управляется напряжением положительной полярности. Лучше найти отдельно источник питания. Например, батарейка, системный блок ПК, аккумулятор. Положительным полюсом стыкуются с землей схемы, отрицательный подается на базу. Причем придется убрать резистора из левой ветви.
  4. Кнопка поможет узнать гарантированно: эксперимент начался. Без нее управляющего напряжения не подается. Стоит нажать кнопку, отпустить – пронаблюдаете результат. Светодиод загорится и погаснет – ток удержания не выдержан, тиристор исправен. Иногда светодиод будет продолжать гореть, зависит от его характеристик.

Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным. Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Где взять питание тестировщику

Положение электродов мультиметра

Адаптер телефона дает ток 100 – 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
  2. Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.

Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).

Раскладка портов USB

Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль. Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.

Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:

  1. +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
  2. Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
  3. – 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно несет напряжение +3,3 В.

Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться. Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА. Случай, когда не любой телефонный зарядник годится провести опыт.

Как проверить тиристор мультиметром: особенности тестирования

Довольно большое распространение получили тиристоры. Они применяются при создании различных электрических приборов и мощных силовых установок. Особенности рассматриваемых полупроводников заключаются в том, что проверить их при применении мультиметра достаточно сложно. Для полноценной проверки нужно собрать сложную схему. Важно понимать, как проверить тиристор мультиметром, так как пробой и внутренний обрыв являются распространенными проблемами.

Предварительная подготовка

Подобный измерительный прибор получил широкое распространение: применяется для определения различной информации. Предварительная подготовка предусматривает расшифровку спецификации, для чего достаточно рассмотреть маркировку на полупроводниковом изделии.

После определения типа изделия и цоколевки можно приступить к тесту пробоя при помощи мультиметра. В большинстве случаев проводится проверка на пробой, для чего изделие можно оставить на плате, поэтому на этом этапе не требуется паяльник.

Тест на пробой

Проверка тиристора начинается с определения пробоя. Рекомендуется начинать с предварительного тестирования, которое связано с измерением сопротивления между двумя выходами «А» и «К», «К» и «УЭ». Алгоритм действий имеет следующие особенности:

  1. Для тестирования применяется мультиметр. Его включают в режим «прозвонки», и снимаются показатели между двумя выводами «УЭ» и «К». Если устройство находится в хорошем техническом состоянии, то снятые показатели будут в диапазоне от 40 Ом до 0,55 кОм. Низкое значение может указывать на некоторые проблемы с устройством.
  2. Далее рекомендуется сменить положение щупов, и процесс повторяется. Снятые показатели должны соответствовать тем, которые были получены в первом случае.
  3. Следующий шаг заключается в измерении сопротивления между выводами «К» и «А». В этом случае показатель сопротивления должен стремиться к бесконечности. Значение может варьироваться в зависимости от полярности измерительного устройства. Низкий показатель указывает на то, что есть пробой в переходе. Для более точного результата рекомендуют выпаивать устройство, которое тестируется.

Проверка симистора мультиметром подобным образом не позволяет получить точный показатель. Немного усложнив процесс тестирования, можно существенно повысить точность полученных результатов.

Проверка открытого и закрытого положения

Тестирование на пробой не позволяет определить, есть ли внутренний обрыв. Именно поэтому применяемая схема существенно усложняется. Более точный показатель можно достигнуть следующим образом:

  1. Применяемый мультиметр переводится в режим «прозвонки», после чего к нему подключается тиристор. Щуп, который имеет черный провод, подключается к выводу «К», а красный к «А».
  2. При применении подобной схемы подключения измерительный прибор указывает бесконечное сопротивление.
  3. Следующий шаг заключается в подключении «УЭ» с выходом «А». В этом случае происходит частичное падение показателя сопротивления, и после обрыва соединения он снова стремится к значению бесконечности. Тока, проходящего через штыри измерительного прибора, недостаточно для сдерживания тиристора в закрытом состоянии.

Еще больше повысить точность измерений можно при сборке собственного измерительного прибора.

Самодельный пробник

Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.

Схема самодельного пробника представлена сочетанием следующих элементов:

  1. Лампочка небольшого размера с показателями 0,3 А и 6,3 В.
  2. Трансформатор со вторичной обмоткой 6,3 В. Рекомендуется использовать вариант исполнения ТН2.
  3. Диод выпрямительного типа с обратным напряжением около 10 Вольт и сопротивлением не менее 300 мА. Примером можно назвать вариант исполнения Д226.
  4. В схему также включается конденсатор, емкость которого составляет 1000 мкФ. Устройство должно быть рассчитано на напряжение 16 В.
  5. Создается сопротивление с номиналом 47 Ом.
  6. Предохранитель на 0,5 А. При применении мощного силового трансформатора следует повысить номинал предохранителя.

Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.

Особенности процедуры

Следует учитывать, что самодельная конструкция позволяет точно определить работоспособность устройства. Пошаговая инструкция выглядит следующим образом:

  1. К собранной самодельной конструкции подключается полупроводниковый элемент.
  2. Для того чтобы тесты могли проводиться в режиме постоянного тока, устанавливается переключатель.
  3. Включается пробник при помощи тумблера. При этом ток не должен попасть на лампу.
  4. К тестируемому устройству подводится напряжение через резистор. В этом случае тиристор переводится в открытие положение, на лампочку подается напряжение, и она начинает светиться.
  5. Далее отпускается кнопка, но тиристор находится в открытом положении, и индикатор должен гореть.
  6. Проводится смена положения переключателя, после чего тиристор переходит в закрытое состояние, и лампочка гаснет.
  7. При переводе измерительного устройства в режим работы с переменным током лампочка начинает гореть не полностью.

Если проверяемое устройство проявляло себя так, как в описании, то тиристор находится в хорошем техническом состоянии и работает правильно. Если лампочка горит постоянно, то это говорит о пробое. Если при нажатии на клавишу она не загорается, то это указывает на внутренний обрыв. Именно поэтому можно обойтись без мультиметра.

Тестирование детали на плате

При необходимости можно проверить тиристор мультиметром без демонтажа детали. Однако при применении самодельной конструкции придется выпаять элемент, так как в качестве индикатора используется лампочка. К особенностям этого процесса относятся следующие моменты:

  1. Требуется паяльник. Подобный инструмент требуется при проведении различной работы с электроникой. Мощность и диаметр жилы выбираются в соответствии с тем, какие размеры имеет плата.
  2. При проведении работы следует учитывать, что нельзя оказывать слишком высокую температуру на плату. Это может привести к повреждению дорожек и других элементов.
  3. Нельзя повредить выходы, так как это может осложнить проводимые тесты.

Необходимость в выпаивании детали определяет то, что многие решают использовать мультиметр для проверки. В большинстве случаев полученных результатов вполне достаточно для оценки состояния тиристора.

Прозвонка динистора

При необходимости можно провести проверку динистора. К ключевым моментам относятся следующие моменты:

  1. Для проведения теста требуется источник питания с высоким напряжением, показатель которого выше, чем у динистора.
  2. Ограничить ток можно при подключении резистора с показателем сопротивления от 100 до 1000 Ом.
  3. Плюсовой провод подключается к аноду, а катод к клемме ограничительного резистора. Свободный конец сопротивления соединяется с минусом блока питания.

Применяемый измерительный прибор в соответствующем режиме через специальные щупы соединяется с анодом и катодом. Тестер должен лежать в пределе милливольта, после чего динистор открывается.

Определение исправности устройства

Исправность рассматриваемого устройства можно проверить при применении обычного источника света и измерительного прибора. К особенностям этой техники относятся следующие моменты:

  1. Источник постоянного тока соединяется через тринистор. В цепь также включается лампа с соответствующим напряжением.
  2. Щупы мультиметра подводятся к катоду и аноду. Следует установить режим измерения, соответствующий постоянному напряжению.
  3. Устройство должно быть рассчитано на измерение показателей, которые превышают значения применяемого источника напряжения.
  4. В качестве источника питания можно использовать батарейку любого номинала.
  5. Осуществляется подача напряжения для теста устройства.

На момент подключения источника питания тринистор открывается, ток подводится к лампочке, и она загорается. После снятия управляющего воздействия лампа должна продолжать гореть, так как проходит ток удержания.

Выбор мультиметра

Для тестирования различного электрического оборудования требуется специальный измерительный прибор, который называют мультиметром. Основные критерии выбора:

  1. При выборе практически всегда уделяется внимание степени функциональности устройства.
  2. Практически все устройства можно разделить на две основные категории: стрелочные и цифровые. Сегодня стрелочные практически не применяются, так как они отображают небольшое количество информации, точность данных может быть невысокой.
  3. Показатель погрешности может варьировать в довольно большом диапазоне. Качественные модели имеют погрешность не более 3%. Лучше выбирать мультиметр с наименьшим значением погрешности, однако они обходятся дорого.
  4. Степень комфорта при использовании конструкции. Измерительное устройство может иметь самые различные размеры и форму. Если оно будет некомфортным в применении, то могут возникнуть серьезные проблемы.
  5. Уделяется внимание и степени защиты от пыли, влаги, ударных нагрузок. При изготовлении измерительного устройства могут использоваться самые различные материалы, некоторые из них характеризуются высокой защитой от воздействия влаги и пыли.
  6. Класс электробезопасности. По этому показателю устройства классифицируются согласно установленным стандартам.
  7. Популярность бренда. Хорошие производители цифровых тестеров неоднократно проверяют надежность и качество выпускаемой продукции.

Рассматривая то, как проверить тиристор ку202н мультиметром, следует учитывать, что все подобные измерительные приборы разделяются на несколько классов:

  1. CAT 1 — устройства, подходящие для работы с низковольтными сетями.
  2. CAT 11 — класс устройства, подходящего к сети питания.
  3. CAT 111 — класс, предназначенный для работы внутри сооружений.
  4. CAT 1 V — для работы с цепью, которая расположена вне здания. Устройства этого класса имеют высокую защиту от воздействия окружающей среды.

После выбора измерительного инструмента можно приступить к тестам. Полученная информация может записываться в блокнот или сохраняться в память устройства, если у него есть соответствующая функция.

Как проверить тиристор мультиметром на работоспособность не выпаивая

Любое электронное устройство содержит в себе достаточно внушительный перечень электрокомпонентов, которые позволяют ему управлять электрическим током, напряжением и сопротивлением внутри себя. Они нужны в первую очередь для регулирования отдельных электрических параметров, необходимых для нормальной работы того или иного электроприбора. Например, резисторы преобразовывают силу тока в напряжение и наоборот, а транзистор — для увиливания и генерации электроколебаний. Среди таких радиоэлементов есть и тиристор. В этой статье будет рассказано, что такое тиристор и как проверить тринистор мультиметром не выпаивая его из платы или схемы.

Что это такое

Тиристор — это полупроводниковый электрический элемент или прибор. Он нужен для того, чтобы регулировать и коммуницировать токи больших значений. Эти элементы управляют электрической цепью с точки зрения приема электрических токов и их регулирования. С этой точки зрения они напоминают работу транзисторов.

Условные обозначения некоторых элементов на схеме

Как правило, такие элементы обладают тремя выходами: управляющим и двумя, образующими путь для протекания электрических токов. Как известно, транзистор начинает открываться пропорционально величине тока управления цепи. Чем больше ток, тем больше открыт транзистор. Работает это и в обратном направлении. Тиристор же устроен немного иначе: он открывается полностью, но интервалами, задающимися скачками тока. Самое интересное то, что он не закрывается даже тогда, когда не получает управляющего сигнала.

Условные обозначения некоторых элементов на схеме

Характеристики и принцип работы

Согласно схеме, которая будет представлена ниже, можно рассмотреть принцип работу элемента. К аноду этого радиоэлемента подключена лампочка, с которой соединяется вывод плюса источника питания с помощью выключателя K2. Катод же радиоэлемента подключают, соответственно, к минусу питания. Когда цепь включается, на элемент поступает напряжение, но лампочка все равно не горит. Нажав на переключатель K2, электроток пройдет через резистор и направится на электрод управления и лампочка начнет светиться.

Схема подключения тиристора на 1 КОм

Важно! В этом и есть суть тиристора. На схеме его зачастую обозначают латинской буквой G, что означает английское слово Gate (в переводе на русский — ворота или затвор).

Резистор работает таким образом, что ограничивает поступление тока от вывода управления. Минимальный ток срабатывания такого элемента — 1 мА, а допустимый для работы — 15 мА. Именно из-за этого подбирается резистор с сопротивлением 1 кОм. Если нажать на переключатель снова, то ничего не изменится. Закрыть его можно отключением питания. Таким образом, тиристор — это своего рода электронный ключ с фиксацией.

Тиристор с подсоединенными проводами

Что качается технических характеристик, то все зависит от модели конкретного элемента. В общем случае этот элемент характеризуют:

  • Обратное напряжение;
  • Закрытое напряжение;
  • Импульс;
  • Повторяющийся импульс;
  • Среднее напряжение;
  • Обратный ток;
  • Время включения и выключения;
  • Постоянное напряжение;
  • Ток в открытом напряжении.
Подключение лампочки к тиристору

Схема проверки

Чтобы проверить элемент и узнать, рабочий ли он, нужна лампочка, три провода (проводника) и питающий элемент постоянного тока. Если это блок питания, то на нем необходимо выставить напряжение, достаточное для загорания светодиода. Далее необходимо привязать и припаять провода к каждому выводу радиоэлемента.

Важно! На анод подается «плюс» питания, а на катод — «минус», который будет проходить через лампочку.

Подключение питания цепи с помощью обычной пальчиковой батарейки

После этого необходимо подать напряжение на электрод управления. Для обычного тиристора это больше 0.2 Вольт, поэтому хватит и батарейки на полтора Вольта. Когда напряжение будет подано, лампочка зажжется. Для проверки можно использовать щупы мультитестера ( на их концах напряжение также больше 0.2 Вольт), но об этом в следующем разделе. Если убрать питание, то лампочка будет продолжать гореть, так как подан импульс управляющего электрода. Закрыть тиристор можно, отключив лампочку или убрав щупы мультиметра.

Если питания нет, то мультиметр будет показывать бесконечное напряжение, то есть единицу

Чем можно проверить тиристор на исправность

Чтобы проверить тиристор на работоспособность не выпаивая его, можно пользоваться специальными приборами:

  • Мультиметром. На концах щупов прибора имеется напряжение, которое можно подать на электрод. Для этого замыкается анод и электрод. В результате сопротивление резко падает: на мультиметре это видно. Это свидетельствует о том, что тиристор отрылся. Если отпустить мультиметр, то он снова будет показывать бесконечное сопротивление.
  • Тестером. Для проверки понадобится не только тестер, но и источник питания от 6 до 10 Вольт, а также провода. Необходимо включить тестер между катодом и анодом, а после этого подключить батарейку между электродом управления и катодом. Если подача питание не осуществляется, то тиристор работает некорректно. Также если питание постоянное при любом напряжении, то элемент также работает неверно.
Вот как описанная схема тиристорного элемента выглядит на практике

Таким образом, было рассмотрено, как проверить тринистор на работоспособность и основные способы ее проверки. Проверять правильность работы и прозвонить состояние тринистора можно, используя несколько способов: мультиметровый и тестерный. Оба отлично справляются с поставленной задачей.

Как проверять тиристоры исправность не выпаивая

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.

Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:

  1. Высокая проводимость (открытое).
  2. Низкая проводимость (закрытое).

Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Чтобы приключаться между состояниями, используется специальная технология, которая передает сигналы. С помощью сигнала от объекта управления, тиристор станет в положении высокой проводимости (открытое), а для того чтобы его выключить нужно заряженный конденсатор соединить с ключом.

Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.

Самые известные типы данных устройств:

  • Диодный. Переходит в проводящий режим, когда уровень тока повышается.
  • Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
  • Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
  • Оптотиристор. Работает благодаря потоку света.
  • Запираемые.

Применение тиристоров

Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.

Общее применение делится на четыре группы:

  • Экспериментальные устройства.
  • Пороговые устройства.
  • Силовые ключи.
  • Подключение постоянного тока.

Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.

Вот некоторые характеристики данного тиристора:

  • Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
  • Напряжение в положении низкой проводимости 100 В.
  • Импульс в состоянии высокой проводимости – 30 А.
  • Повторный импульс в этом же положении – 10 А.
  • Постоянное напряжение 7 В.
  • Обратный ток – 4 мА
  • Ток постоянного типа – 200 мА.
  • Среднее напряжение -1,5 В.
  • Время включения – 10мкс.
  • Выключение – 100 мкс.

Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.

Тиристоры быстродействующие ТБ333-250

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Проверка мультиметром

Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.

Что нужно, чтобы проверить тиристор мультиметром:

  1. Подцепить черный щуп с минусом к катоду.
  2. Подцепить красный щуп с плюсом к аноду.
  3. Один конец выключателя соединить с разъемом красного щупа.
  4. Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
  5. Быстро включить и отключить выключатель.
  6. Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
  7. В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
  8. Если перекидывание щупов не помогло, то тиристор неисправен.

Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.

Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели

Другие варианты проверки

Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.

Чтобы проверить устройство тестером нужно следовать следующей схеме:

  • Проверка тимистора с помощью омметра

    Включить тестер между катодом и анодом: должно показать «бесконечность», потому что тиристор в состоянии низкой проводимости.
  • Подключить батарейку между УЭ и катодом. На тестере должно спасть сопротивление, так как появилась проводимость.
  • Если подачи питания совсем нет, то устройство работает неправильно.
  • Если подача питания постоянная, при любом напряжении на электроды, то и в этом случае с тиристором что-то не так.

Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:

  • Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
  • Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.

Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).

Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Как проверить тиристор ку202н мультиметром на исправность

Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.

Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:

  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Тестирование высоковольтного тиристора

В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.

Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.

Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.

Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:

  1. Высокая проводимость (открытое).
  2. Низкая проводимость (закрытое).

Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.

Самые известные типы данных устройств:

  • Диодный. Переходит в проводящий режим, когда уровень тока повышается.
  • Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
  • Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
  • Оптотиристор. Работает благодаря потоку света.
  • Запираемые.

Применение тиристоров

Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.

Общее применение делится на четыре группы:

  • Экспериментальные устройства.
  • Пороговые устройства.
  • Силовые ключи.
  • Подключение постоянного тока.

Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.

Вот некоторые характеристики данного тиристора:

  • Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
  • Напряжение в положении низкой проводимости 100 В.
  • Импульс в состоянии высокой проводимости – 30 А.
  • Повторный импульс в этом же положении – 10 А.
  • Постоянное напряжение 7 В.
  • Обратный ток – 4 мА
  • Ток постоянного типа – 200 мА.
  • Среднее напряжение -1,5 В.
  • Время включения – 10мкс.
  • Выключение – 100 мкс.

Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.

Тиристоры быстродействующие ТБ333-250

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Проверка мультиметром

Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.

Что нужно, чтобы проверить тиристор мультиметром:

  1. Подцепить черный щуп с минусом к катоду.
  2. Подцепить красный щуп с плюсом к аноду.
  3. Один конец выключателя соединить с разъемом красного щупа.
  4. Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
  5. Быстро включить и отключить выключатель.
  6. Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
  7. В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
  8. Если перекидывание щупов не помогло, то тиристор неисправен.

Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.

Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели

Другие варианты проверки

Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.

Чтобы проверить устройство тестером нужно следовать следующей схеме:

  • Проверка тимистора с помощью омметра Включить тестер между катодом и анодом: должно показать «бесконечность», потому что тиристор в состоянии низкой проводимости.
  • Подключить батарейку между УЭ и катодом. На тестере должно спасть сопротивление, так как появилась проводимость.
  • Если подачи питания совсем нет, то устройство работает неправильно.
  • Если подача питания постоянная, при любом напряжении на электроды, то и в этом случае с тиристором что-то не так.

Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:

  • Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
  • Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.

Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).

Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:

  1. Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм. Рис 3. Измеряем сопротивление между УЭ и К
  2. Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
  3. Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.

Рис 4. Измеряем сопротивление перехода Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).

Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.

Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Как проверить SCR цифровым мультиметром?

SCR — выпрямитель с кремниевым управлением , тиристор ( THYR atron и trans ISTOR )
Название THYRISTOR образовано из заглавных букв THYRatron и transISTOR. Тиристор представляет собой твердотельное устройство, подобное транзистору, и имеет характеристики, аналогичные характеристикам версии с тиратронной лампой. Типы семейства тиристоров, например,


A. TRIAC-двунаправленный триод
B.DIAC- Двунаправленный диод
C. SUS — Кремниевый односторонний переключатель.
D. SCS — Переключатель с кремниевым управлением.
F. LASCR — Световая активация SCR.
G. LASCS — СКС с активированным светом.
H. PUT — Программируемый однопереходный транзистор.
I. GTO — Затворный тиристор с отключенным затвором.
(SCR) Кремниевый выпрямитель.
SCR — это 4-слойное полупроводниковое переключающее устройство с 3 переходами. Он имеет 3 терминала, а именно:
1. АНОД (A)
2. КАТОД (C)
3. ВОРОТА (G)
ТЕОРИЯ:
Через прямое смещение (анод: + ve, катод: -ve), он не будет проводите до тех пор, пока V ak не превысит значение, называемое перенапряжением прямого прерывания V brf, когда SCR включен.Величиной V brf можно управлять с помощью уровня тока затвора.
SCR действует как переключатель;
Нижнее перенапряжение прямого прерывания V brf выключено.
Когда V brf включен, пока ток затвора выше «тока удержания».
Когда SCR включен, затвор теряет управление, то есть уменьшение тока затвора не отключает SCR.

SCR-TYN612-Технический паспорт


SCR НЕ ДЕЙСТВУЕТ ВО ВРЕМЯ ОБРАТНЫХ УСЛОВИЙ — ОТ ИМЕНИ ВЫПРАВИТЕЛЬ.
ПЕРВОЕ ИСПОЛЬЗОВАНИЕ ЦИФРОВОГО МУЛЬТИМЕТРА
DMM означает цифровой мультиметр — ТЕСТИРОВАНИЕ С DMM — (режим диода)

  • Никогда не превышайте предельные значения защиты, указанные в технических характеристиках для каждого диапазона измерения.
  • Если масштаб измеряемой величины неизвестен заранее, установите переключатель диапазона в самое верхнее положение.
  • Когда счетчик подключен к измерительной цепи, не прикасайтесь к неиспользуемым клеммам.
  • Перед поворотом переключателя диапазонов для изменения функций отсоедините все провода от тестируемой цепи.
  • Ни в коем случае не измеряйте сопротивление в цепи под напряжением.
  • Всегда будьте осторожны при работе с напряжением выше 60 В постоянного тока или 30 В переменного тока RMS.
  • ПРИ ИЗМЕРЕНИИ УПРАВЛЯЙТЕ ПАЛЬЦАМИ ЗА БАРЬЕРАМИ ЗОНДА.
  • ПЕРЕД ВСТАВКОЙ ТРАНЗИСТОРОВ ДЛЯ ИСПЫТАНИЯ ВСЕГДА УБЕДИТЕСЬ, ЧТО ИСПЫТАТЕЛЬНЫЕ ПРОВОДА ОТКЛЮЧЕНЫ ОТ ЛЮБОЙ ЦЕПИ ИЗМЕРЕНИЯ.
  • КОМПОНЕНТЫ
  • НЕ ДОЛЖНЫ ПОДКЛЮЧАТЬСЯ К ВЧ-РОЗЕТКЕ ПРИ ИЗМЕРЕНИИ НАПРЯЖЕНИЯ С ПОМОЩЬЮ ТЕСТОВЫХ ПРОВОДОВ.

ВАЖНО:

  • Если измеряемое сопротивление превышает максимальное значение выбранного диапазона или вход не подключен, появляется индикация выхода за пределы диапазона «!» будет отображаться.
  • При проверке внутрисхемного сопротивления убедитесь, что в проверяемой цепи отключено все питание и что все конденсаторы полностью разряжены.
  • Для измерения сопротивления выше 1 МОм измерителю может потребоваться несколько секунд для получения стабильных показаний. Это нормально для измерений высокого сопротивления.


КАК ПРОВЕРИТЬ SCR с помощью цифрового мультиметра? — ВЫБОР ДИОДНОГО РЕЖИМА ЦИФРОВОГО МУЛЬТИМЕТРА.
ШАГ-1.

  • Подсоедините положительный измерительный провод к катоду
  • Отрицательный измерительный провод к аноду = СЧИТЫВАНИЕ DMM Показывает OL или 1 или обрыв.


ШАГ-2.

  • Подключите Отрицательный измерительный провод к катоду
  • положительный измерительный провод к аноду = СЧИТЫВАНИЕ DMM ПОКАЗЫВАЕТ OL или 1 или обрыв
  • положительный измерительный провод к затвору = 0,235 В СЧИТЫВАНИЕ DDM = 235 мВ. (Это напряжение затвора очень важно) в противном случае короткое замыкание.


ЭТАП-3.

  • Подсоедините положительный измерительный провод к катоду
  • Отрицательный измерительный провод к аноду = СЧИТЫВАНИЕ DMM ПОКАЗЫВАЕТ OL или 1 или обрыв

ШАГ-4.

  • Подключите Отрицательный измерительный провод t o катод
  • положительный тестовый провод к аноду = СЧИТЫВАНИЕ DMM ВЫИГРЫВАЕТ OL или «1» или разомкнут (ЗНАЧИТ ПЕРЕГРУЗКУ), состояние ХОРОШО.

Проверка: Если вы получаете показания в прямом смещении как 0000 или OL или 1 или в разомкнутом и обратном смещении как 0000 (или) низкие значения, устройство может быть НЕИСПРАВНЫМ и нуждается в замене.
SCR Testing с источником питания.
Цепи SCR.



Проверьте свой SCR с помощью источника питания низкого напряжения (9 В), указанного выше модели подключенной цепи.Подключите R = значение 560E Ом к положительной клемме 9В батареи затвора SCR. Нажмите выключатель-1, лампа, связанная с анодом, загорится постоянно. При нажатии переключателя 2 лампа 6 В выключается вручную.

Результат: SCR — это ХОРОШЕЕ состояние.

Неудачный тест SCR / диода с помощью стандартного мультиметра — Fastron Electronics Store

Существует несколько простых способов проверки неисправности SCR или диода с помощью мультиметра, которые позволят диагностировать 95% типичных отказов устройств.В нашем примере мы рассматриваем оригинальный силовой модуль с двойной изоляцией на 160 А MCC162-16io1 от IXYS. Тот же метод может быть применен к любому типу тиристоров / диодов внутри или вне моста, цепи переключателя переменного тока или по отдельности. Что касается затвора, катода и анода как соответствующих выводов, к которым мы будем подключаться для тестирования, выводы одинаковы для всех известных брендов.

Диод и SCR

SCR просто действует как диод, когда подается напряжение затвора, как в названии Controlled Rectifer .Чтобы проверить SCR или диод, нам необходимо проверить наличие короткого замыкания или разрыва цепи между анодом и катодом и проверить наличие высокого импеданса между анодом и катодом и между затвором и катодом (только для SCR), которые являются основными режимами отказа.

1) Испытание анода и катода как для диодов, так и для тиристоров (SCR)

Установите мультиметр на проверку диодов / короткого замыкания и убедитесь, что щупы подключены для проверки напряжения. Затем вы проверяете оба направления диода / SCR, надежно соединив положительный (красный) с контактом 1 и отрицательный (черный) щуп с контактом 2, а второй диод соединил положительный (красный) с контактом 3 и отрицательный (черный). к контакту 6.

Если мультиметр издает звуковой сигнал, это означает короткое замыкание и отказ SCR. Если звуковой сигнал отсутствует, соедините два щупа мультиметра вместе, чтобы убедиться, что мультиметр работает правильно. Затем еще раз проверьте штифты сверху.

Для диода вы ожидаете увидеть напряжение около 0,3-0,7 В при проверке прямого направления. Т.е. Анод (положительный красный зонд), к катоду (отрицательный черный зонд).

Тест обратного смещения с катодом (положительный красный зонд) на анод (отрицательный черный зонд) не должен издавать звуковой сигнал.Если мультиметр издает звуковой сигнал, можно сказать, что диод неисправен, произошло короткое замыкание.

Для SCR вы не получите звуковой сигнал ни при прямом, ни при обратном смещении.

Если нет звукового сигнала, мы должны дополнительно проверить сопротивление, чтобы подтвердить, что SCR / диод не вышел из строя, короткое замыкание или разрыв цепи

2) Проверка сопротивления для проверки обрыва / короткого замыкания

В качестве вторичного теста мы теперь переключаем мультиметр в режим проверки сопротивления (Ом). Затем мы измеряем расстояние между анодом и катодом на обоих устройствах.Вы должны увидеть значение от сотен кОм до МОм. Если полное сопротивление низкое, порядка нескольких тысяч кОм или Ом, то это частичное короткое замыкание. Это может подтвердить приведенные выше результаты или в некоторых случаях указать на частичный отказ или «подозрительное» устройство, как мы их называем в отрасли.

3) Испытание сопротивления катода затвора SCR

Последний тест предназначен только для SCR и предназначен для тестирования затвора к катоду на каждом SCR. Снова воспользуйтесь тестом на сопротивление и проверьте контакт 5 с контактом 2 и контакт 6 с контактом 3.Импеданс должен быть менее 10 Ом или около 10-50 Ом. Если он очень высокий, то затвор неисправен или имеет высокий импеданс, который вызовет серьезную проблему из-за схемы возбуждения без соответствующей способности возбуждения. Этот режим отказа является наиболее вероятным, когда плата управления / запуска SCR вышла из строя. Это может произойти из-за ударов молнии или кратковременных скачков напряжения.

Если эти тесты прошли успешно, а проблемы по-прежнему возникают, пожалуйста, свяжитесь с нами и узнайте о нашем тестировании устройства внутри компании.Мы можем сделать еще один шаг вперед, используя специальное испытательное оборудование, которое мы используем в производстве.

Мы также продаем следующее подходящее испытательное оборудование.

Если вы обнаружите, что устройство оказалось неисправным, у нас есть полный ассортимент модулей диод / SCR, капсул (PUK) и устройств для крепления на шпильках, которые подходят практически для любого применения.

Не стесняйтесь обращаться к нам за дополнительной информацией.

Как проверить тиристор с помощью омметра

Выпрямитель — это устройство, которое позволяет электрическому току течь только в одном направлении.Выпрямитель с кремниевым управлением, также известный как SCR, представляет собой выпрямитель, в котором можно управлять прямым сопротивлением. Обычно SCR не позволяет току течь в любом направлении, но если вы подаете сигнал на затвор SCR, он позволит некоторому количеству тока (на основе сигнала на затворе) течь в одном направлении. Омметр — это прибор, измеряющий электрическое сопротивление. Омметр можно использовать для проверки правильности работы тиристора.

    Установите для омметра значение R x 10 000.

    Подключите отрицательный вывод омметра к аноду SCR, а положительный вывод — к катоду SCR.

    Считайте значение сопротивления, отображаемое на омметре. Он должен показывать очень высокое значение сопротивления. Если он показывает очень низкое значение, то SCR закорочен и его следует заменить.

    Поменяйте местами выводы омметра так, чтобы положительный вывод был подсоединен к аноду, а отрицательный вывод был подсоединен к катоду SCR.

    Считайте значение сопротивления, отображаемое на омметре. Он должен показывать очень высокое значение сопротивления. Если он читает очень низкое значение, то SCR закорочен и неисправен.

    Прикоснитесь одним концом короткой перемычки к аноду SCR и одновременно коснитесь другим концом перемычки к затвору SCR. Если SCR работает правильно, показание будет очень низким значением сопротивления. Значение останется низким, даже если вы отсоедините перемычку.Однако в правильно работающем тиристоре, если вы отключите любой из проводов омметра, сопротивление вернется к очень высокому значению, даже если провод снова подключен, если вы снова не закоротите анод на затвор. Если ваш SCR ведет себя так, как описано в случае, когда вы закорачиваете затвор на анод, и в случае, когда вы удаляете и заменяете провод омметра, ваш SCR работает правильно.

Как проверить транзистор и диод »Электроника

Очень быстро и легко научиться тестировать транзистор и диод с помощью аналогового мультиметра — обычно этого достаточно для большинства приложений.


Руководство по мультиметру Включает в себя:
Основы работы с измерителем Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр DMM Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Тест диодов и транзисторов Диагностика транзисторных цепей


Хотя многие цифровые мультиметры в наши дни имеют специальные возможности для тестирования диодов, а иногда и транзисторов, не все, особенно старые аналоговые мультиметры, которые все еще широко используются.Однако по-прежнему довольно легко выполнить простой тест «годен / не годен», используя простейшее оборудование.

Этот вид тестирования позволяет определить, работает ли транзистор или диод, и, хотя он не может предоставить подробную информацию о параметрах, это редко является проблемой, потому что эти компоненты проверяются при изготовлении, и производительность сравнительно редко может быть нарушена. упадут до точки, в которой они не работают в цепи.

Большинство отказов являются катастрофическими, в результате чего компонент становится полностью неработоспособным.Эти простые тесты мультиметра позволяют очень быстро и легко обнаружить эти проблемы.

Таким образом можно тестировать диоды

большинства типов — силовые выпрямительные диоды, сигнальные диоды, стабилитроны / опорные диоды напряжения, варакторные диоды и многие другие типы диодов.

Как проверить диод мультиметром

Базовый тест диодов выполнить очень просто. Чтобы убедиться, что диод работает нормально, необходимо провести всего два теста мультиметра.

Тест диода основан на том факте, что диод будет проводить только в одном направлении, а не в другом.Это означает, что его сопротивление будет отличаться в одном направлении от сопротивления в другом.

Измеряя сопротивление в обоих направлениях, можно определить, работает ли диод, а также какие соединения являются анодом и катодом.

Поскольку фактическое сопротивление в прямом направлении зависит от напряжения, невозможно дать точные значения ожидаемого прямого сопротивления, так как напряжение на разных измерителях будет разным — оно будет даже различным в разных диапазонах измерителя.


… полоса на корпусе диода представляет катод ….

Метод проверки диода аналоговым измерителем довольно прост.

Пошаговая инструкция:
  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но, вероятно, лучше всего подойдет средний диапазон Ом, если их несколько.
  2. Подключите катодную клемму диода к клемме с положительной меткой на мультиметре, а анод — к отрицательной или общей клемме.
  3. Установите измеритель на показания в омах, и должны быть получены «низкие» показания.
  4. Поменяйте местами соединения.
  5. На этот раз должно быть получено высокое значение сопротивления.

Примечания:

  • На шаге 3 выше фактическое показание будет зависеть от ряда факторов. Главное, чтобы счетчик отклонялся, возможно, до половины и более. Разница зависит от многих элементов, включая батарею в глюкометре и используемый диапазон.Главное, на что следует обратить внимание, это то, что счетчик сильно отклоняется.
  • При проверке в обратном направлении кремниевые диоды вряд ли покажут какое-либо отклонение измерителя. Германиевые, которые имеют гораздо более высокий уровень обратного тока утечки, могут легко показать небольшое отклонение, если измеритель установлен на высокий диапазон Ом.

Этот простой аналоговый мультиметр для проверки диода очень полезен, потому что он очень быстро показывает, исправен ли диод.Однако он не может тестировать более сложные параметры, такие как обратный пробой и т. Д.

Тем не менее, это важный тест для обслуживания и ремонта. Хотя характеристики диода могут измениться, это случается очень редко, и очень маловероятно, что произойдет полный пробой диода, и это будет сразу видно с помощью этого теста.

Соответственно, этот тип теста чрезвычайно полезен в ряде областей тестирования и ремонта электроники.

Проверка диодов мультиметром

Как проверить транзистор мультиметром

Тест диодов с помощью аналогового мультиметра может быть расширен, чтобы обеспечить простую и понятную проверку достоверности биполярных транзисторов. Опять же, тест с использованием мультиметра дает только уверенность в том, что биполярный транзистор не перегорел, но он все еще очень полезен.

Как и в случае с диодом, наиболее вероятные отказы приводят к разрушению транзистора, а не к небольшому ухудшению характеристик.

Испытание основано на том факте, что биполярный транзистор можно рассматривать как состоящий из двух встречных диодов, и при выполнении теста диодов между базой и коллектором и базой и эмиттером транзистора с использованием аналогового мультиметра, большая часть можно установить базовую целостность транзистора.

Эквивалентная схема транзистора с диодами для проверки мультиметра.

Требуется еще один тест. Транзистор должен иметь высокое сопротивление между коллектором и эмиттером при разомкнутой цепи базы, так как имеется два встречных диода.Однако возможно, что коллектор-эмиттерный тракт перегорел, и между коллектором и эмиттером был создан путь проводимости, при этом все еще выполняя диодную функцию по отношению к базе. Это тоже нужно проверить.

Следует отметить, что биполярный транзистор не может быть функционально воспроизведен с использованием двух отдельных диодов, потому что работа транзистора зависит от базы, которая является переходом двух диодов, являясь одним физическим слоем, а также очень тонкой.

Пошаговая инструкция:

Инструкции даны в основном для транзисторов NPN, поскольку они являются наиболее распространенными в использовании.Варианты показаны для разновидностей PNP — они указаны в скобках (.. .. ..):

  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но, вероятно, лучше всего подойдет средний диапазон Ом, если их несколько.
  2. Подключите клемму базы транзистора к клемме с маркировкой «плюс» (обычно красного цвета) на мультиметре
  3. Подключите клемму с маркировкой «минус» или «общий» (обычно черного цвета) к коллектору и измерьте сопротивление.Он должен читать обрыв цепи (для транзистора PNP должно быть отклонение).
  4. Когда клемма с маркировкой «положительный» все еще подключена к базе, повторите измерение с положительной клеммой, подключенной к эмиттеру. Показание должно снова показать обрыв цепи (мультиметр должен отклоняться для транзистора PNP).
  5. Теперь поменяйте местами подключение к базе транзистора, на этот раз подключив отрицательную или общую (черную) клемму аналогового измерительного прибора к базе транзистора.
  6. Подключите клемму с маркировкой «плюс» сначала к коллектору и измерьте сопротивление. Затем отнесите к эмиттеру. В обоих случаях измеритель должен отклониться (указать обрыв цепи для транзистора PNP).
  7. Далее необходимо подключить отрицательный или общий вывод счетчика к коллектору, а положительный полюс счетчика — к эмиттеру. Убедитесь, что счетчик показывает обрыв цепи. (Счетчик должен показывать обрыв цепи для типов NPN и PNP.
  8. Теперь поменяйте местами соединения так, чтобы отрицательный или общий вывод измерителя был подключен к эмиттеру, а положительный полюс измерителя — к коллектору.Еще раз проверьте, что прибор показывает обрыв цепи.
  9. Если транзистор проходит все тесты, то он в основном исправен и все переходы целы.

Примечания:

  • Заключительные проверки от коллектора до эмиттера гарантируют, что база не «продувалась». Иногда возможно, что диод все еще присутствует между коллектором и базой, эмиттером и базой, но коллектор и эмиттер закорочены вместе.
  • Как и в случае с германиевым диодом, обратные показания для германиевых транзисторов не будут такими хорошими, как для кремниевых транзисторов. Допускается небольшой уровень тока, поскольку это является следствием присутствия неосновных носителей в германии.

Обзор аналогового мультиметра

Хотя большинство мультиметров, которые продаются сегодня, являются цифровыми, тем не менее, многие аналоговые счетчики все еще используются. Хотя они могут и не быть новейшими технологиями, они по-прежнему идеальны для многих применений и могут быть легко использованы для измерений, подобных приведенным выше.

Хотя описанные выше тесты предназначены для аналоговых измерителей, аналогичные тесты могут быть проведены с цифровыми мультиметрами, цифровыми мультиметрами.

Часто цифровые мультиметры могут включать специальную функцию проверки биполярных транзисторов, и это очень удобно в использовании. Общие характеристики тестирования с помощью специальной функции тестирования биполярных транзисторов часто очень похожи на упомянутые здесь, хотя некоторые цифровые мультиметры могут давать значение для текущего усиления.

Использование простого теста для диодов и транзисторов очень полезно во многих сценариях обслуживания и ремонта.Очень полезно иметь представление о том, работает ли диод или транзистор. Поскольку тестеры транзисторов широко не продаются, возможность использования любого мультиметра для обеспечения этой возможности особенно полезна. Это даже удобнее, потому что тест выполнить очень просто.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG Получение данных
Вернуться в меню тестирования.. .

Тестовый модуль SCR / THYRISTOR с мультиметром

МОДУЛЬ SCR / THYRISTOR — это силовое электронное устройство, предназначенное для применения с высоким током и высоким напряжением. Он по-прежнему использует мультиметр, чтобы проверить его состояние: хорошее или плохое. Шаг для проверки почти такой же, как и небольшой SCR, и тот же принцип, однако есть некоторая разница в деталях, например, мы не можем использовать мультиметр для запуска затвора SCR, потому что это силовое электронное устройство.На рынке есть много моделей модуля SCR. На заводской табличке есть внутренняя электрическая схема, которую полезно проверить и установить.

Пример модуля SCR состоит из 1 SCR и 1 диода.

Шаг для проверки МОДУЛЯ SCR / ТИРИСТОРА с помощью мультиметра

1. Найдите клемму и внутреннюю схему SCR на его паспортной табличке или в техническом описании.

2. Из примера модуль SCR состоит из 1 SCR и 1 диода.Сначала проверьте диод, используя диапазон проверки диода на цифровом мультиметре. Исправный диод покажет прямое падение напряжения 0,3-0,7 В (прямое смещение) и отобразит OL 1 раз при обратном смещении. Короткое замыкание диодного дисплея 000В 2 раза и разомкнутый диодный дисплей OL 2 раза. Если диод уже неисправен, следующий шаг делать не нужно.

Контрольный диод THYRISTOR MODULE

Прямое смещение на диод, есть 0.Прямое падение напряжения 371 В.


Обратное смещение на диод, дисплей «OL»

3. Проверьте состояние тринистора, клеммы A и K1. Если установить диапазон омметра, хороший тиристор будет отображать очень высокое сопротивление в мегаомах. Короткое замыкание SCR, дисплей мультиметра 0 Ом и обрыв SCR, дисплей мультиметра OL.


Проверьте клеммы A и K1 SCR, исправный SCR получите очень высокое сопротивление Мега Ом.


Проверьте клеммы A и K1 SCR, исправный SCR получите очень высокое сопротивление Мега Ом.

4. Проверьте состояние SCR, клеммы G1 и K1. Установите диапазон Ом на цифровом мультиметре, хороший тиристор будет показывать низкое сопротивление. Короткое замыкание SCR, дисплей мультиметра 0 Ом и обрыв SCR, дисплей мультиметра OL.


Проверить клеммы G1 и K1. , хороший SCR покажет низкое сопротивление.


Проверить клеммы G1 и K1. , хороший SCR покажет низкое сопротивление.

Аналоговый мультиметр может также проверять диод на модуле SCR, если это исправный диод, будет указывать на низкое сопротивление при прямом смещении и указывать на ∞ (бесконечность) Ом при обратном смещении.Проверьте клеммы G1 и K1 модуля SCR, исправный SCR покажет низкое сопротивление, поэтому его можно проверить по диапазону Rx1 Ом. Тем не менее, клеммы A и K1 SCR имеют сопротивление 4-5 МОм. Аналоговый мультиметр не может отображать или отображать какое-либо движение указателя, это очень высокое значение, после попытки с тем же модулем и в том же состоянии он всегда указывает на точку ∞ (бесконечность ) Ом.

Подробнее о тестировании электронных компонентов в блоге

Разница между испытательными тиристорами и симисторами

Тиристор представляет собой двух- или трехконтактное устройство, состоящее из четырех чередующихся P- и N-слоев.Он также известен как кремниевый выпрямитель и часто используется в переключателях диммера, регуляторах скорости для электродвигателей и переключателях для высоковольтных систем передачи энергии постоянного тока.

Тиристор не работает как усилитель — его выход либо включен, либо выключен. По сути, это выпрямительный диод с внешним управлением. В отличие от двухслойного PN-диода или трехслойного биполярного транзистора NPN или PNP, тиристор имеет четыре слоя (PNPN). Самый распространенный тиристор имеет три вывода: анод, катод и затвор.В трехконтактной версии тиристора четыре слоя состоят из чередующихся материалов N- и P-типа. Анод соединен с P-слоем одним концом, а катод соединен с N-слоем другим концом. Эта конфигурация делает возможным любое из трех возможных состояний:

Когда на анод подается отрицательное напряжение, а на катод — положительное напряжение, тиристор функционирует просто как диод с обратным смещением и не проводит ток. Это называется режимом обратной блокировки.
Когда на анод подается положительное напряжение, а на катод — отрицательное напряжение, но на затворе нет смещения, устройство не проводит ток. Это называется режимом прямой блокировки.
Когда на анод подается положительное напряжение, а на катод подается отрицательное напряжение и устройство переходит в режим проводимости, оно будет продолжать проводить, пока прямой ток не упадет ниже удерживающего тока. (Таким образом, тиристор считается устройством фиксации.)
Если положительное (по отношению к катоду) напряжение, приложенное к аноду, превышает уровень пробоя, как у стабилитрона, возникает лавина и начинается проводимость.Это действие происходит на более низком уровне, когда на затвор подается положительное напряжение. Скорость включения тиристора зависит от величины напряжения, приложенного к затвору. Соответственно, для срабатывания тиристора требуется минимальное напряжение затвора.

После того, как вывод затвора включил тиристор, тиристор продолжает проводить, пока пропускает достаточный ток. Ток фиксации — это наименьшая величина анодного тока, необходимая для удержания тиристора во включенном состоянии в момент включения устройства стробирующим сигналом.Ток фиксации обычно примерно в два-три раза больше тока удержания. Ток удержания — это наименьший ток, при котором анодный ток должен упасть, чтобы перейти в выключенное состояние. Таким образом, если ток удержания составляет 5 мА, тиристор должен пройти менее 5 мА, чтобы прервать проводимость.

Есть несколько других связанных устройств, работа которых близка к тиристорам. Тиристоры можно включить, только подав сигнал на вывод затвора, но нельзя выключить с помощью провода затвора.Напротив, GTO (тиристор выключения затвора) может быть включен стробирующим сигналом и выключен стробирующим сигналом отрицательной полярности. Включение осуществляется положительным импульсом тока между клеммами затвора и катода. Тиристор статической индукции (SITH) похож на GTO, но обычно включен (проводит). Для поддержания выключенного состояния вентиль должен иметь отрицательное смещение.

MOS-управляемые тиристоры (MCT)

работают как тиристоры GTO и имеют два полевых МОП-транзистора с противоположными типами проводимости в эквивалентных схемах.Один занимается включением, другой — выключением. Положительное напряжение на затворе относительно катода включает тиристор. Отрицательное напряжение на затворе относительно анода отключает тиристор. Трудно найти MCT. Они были коммерциализированы лишь на короткое время.

Переключатель с кремниевым управлением (SCS) или выпрямитель с кремниевым управлением, вариант тиристора. По сути, это тиристор с анодным и катодным затвором. Эта дополнительная клемма позволяет лучше контролировать устройство, в основном для отключения тиристора, когда основной ток через него превышает значение тока удержания.

Триодные тиристоры (симисторы) работают как тиристоры, но являются двунаправленными, пропуская ток в любом направлении. Симисторы могут срабатывать как положительным, так и отрицательным током, подаваемым на электрод затвора. Симисторы можно представить как два тиристора с соединенными вентилями. Как и тиристоры, симисторы продолжают проводить ток, когда ток затвора прерывается. Это состояние сохраняется до тех пор, пока основной ток не станет меньше тока удержания.

Цифровой вольтметр может быть полезен для проверки того, работает ли тиристор.Когда DVM находится в режиме высокого сопротивления, подключите отрицательный вывод к аноду тиристора, а положительный вывод к катоду. Значение сопротивления должно быть высоким. Низкое значение означает, что тиристор закорочен. Переключение выводов и повторное считывание сопротивления должны дать еще одно высокое значение. Низкое значение снова означает закороченный тиристор.

Когда цифровой вольтметр все еще подключен к аноду и катоду тиристора, прикоснитесь одним концом короткой перемычки к аноду и одновременно коснитесь другим концом перемычки к затвору тиристора.Если тиристор исправен, показание будет низким. Значение останется низким даже при отсоединении перемычки. В правильно работающем тиристоре, если вы отсоедините любой из выводов омметра, сопротивление вернется к высокому значению, даже когда вывод будет повторно подключен, если вы снова не закоротите анод на затвор.

Следует отметить, что некоторые тиристоры работают только с током, подаваемым цифровым мультиметром, установленным на высокое сопротивление. Если тиристор может выдерживать больший ток, попробуйте установить R x 1000 или R x 100.

Затвор-катод идеального тиристора — это PN переход. Во многих тиристорах также существует параллельный путь короткого замыкания между затвором и анодом, предназначенный для пропускания большого начального тока, чтобы помочь тиристору сработать. Поскольку этот путь сделан из однородного кремния, легированного p-примесью, обычно измеряемое сопротивление между затвором и катодом составляет 10 ~ 50 Ом. Однако производители обычно не характеризуют это значение сопротивления. Он дается только для того, чтобы проинформировать пользователя о том, что низкое сопротивление затвор-катод не указывает на повреждение устройства.При измерении с помощью функции проверки диодов цифрового мультиметра соединение затвор-катод будет отображаться как небольшое (но ненулевое) падение напряжения (например, 0,01 ~ 0,05 В) в обоих направлениях.

Следует также отметить, что тиристоры могут давать хорошие показания DVM и все же быть дефектными. В конечном счете, единственный способ проверить SCR — это подвергнуть его току нагрузки.

Цифровой мультиметр также можно использовать для проверки исправности симистора. Переведите цифровой мультиметр в режим высокого сопротивления, затем подключите положительный провод к клемме MT1 симистора, а отрицательный провод к клемме MT2.Цифровой мультиметр покажет высокое сопротивление. Теперь выберите режим с низким сопротивлением, подключите MT1 и затвор к положительному выводу, а MT2 — к отрицательному выводу. Цифровой мультиметр теперь должен показывать низкое сопротивление (это означает, что симистор включен).

Подводя итог, для SCR, затвор-катод должен тестироваться как диод (которым он является) на цифровом мультиметре. Переходы анод-катод и затвор-анод должны открываться. Для симисторов соединение затвора с MT2 должно тестироваться как диодный переход в обоих направлениях.Соединения MT1-to-MT2 и gate-to-MT1 должны считываться открытыми.

принцип работы, схемы тестирования и включения

Сначала потрудитесь узнать, как работает тиристор. Получите представление о разновидностях: симистор, динистор. Требуется правильно оценить результат теста. Ниже мы расскажем, как проверить тиристор мультиметром, мы даже дадим вам небольшую схему, которая поможет вам массово осуществить задуманное.

Типы тиристоров

Тиристор отличается от биполярного транзистора с большим количеством pn-переходов:

  1. Типичный тиристор с pn-переходами содержит три.Структуры с дырочной электронной проводимостью чередуются на манер зебры. Можно найти концепцию тиристора npnp. Контрольный электрод есть или отсутствует. В последнем случае мы получаем динистор. Он работает по напряжению, приложенному между катодом и анодом: при определенном пороговом значении открывается, начинается спад, обрывается ход электронов. Что касается тиристоров с электродами, то управление осуществляется либо по двум средним pn переходам — ​​со стороны коллектора или эмиттера.Принципиальное отличие продукции от транзистора в режиме неизменяемости после исчезновения управляющего импульса. Тиристор остается открытым до тех пор, пока ток не упадет ниже фиксированного уровня. Обычно называется удерживающим током. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы имеют разное количество pn переходов, становясь как минимум одним. Способен пропускать ток в обоих направлениях.

Начало проверки тиристора мультиметром

Сначала поработаем расположение электродов, чтобы определить:

  • катод;
  • анод;
  • управляющий электрод (основание).

Для открытия тиристорного ключа на катоде прибора поставлен минус (черный щуп мультиметра), плюс к аноду прикреплен якорь (красный щуп мультиметра). Тестер установлен в режим омметра. Низкое сопротивление открытого тиристора. Прекратите устанавливать предел 2000 Ом. Пришло время напомнить: тиристор можно управлять (открывать) положительными или отрицательными импульсами. В первом случае тонкой штыревой перемычкой замыкаем анод на основание, во втором — катод.Кое-где тиристор должен открыться, в результате сопротивление будет меньше бесконечности.

Процесс тестирования сводится к пониманию того, как тиристор управляется напряжением. Отрицательный или положительный. Попробуйте и так, и так (если нет маркировки). Одна попытка сработает ровно, если тиристор исправен.

Далее процесс отличается от проверки транзистора. Когда управляющий сигнал исчезнет, ​​тиристор останется открытым, если ток превысит порог удержания.Ключ может закрываться. Если ток не достигает порога удержания.

  1. Удерживающий ток зарегистрированы технические характеристики тиристора. Потрудитесь загрузить полную документацию из Интернета, будьте в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подается на щупы (обычно 5 вольт), какую мощность выдает. Проверить можно, подключив большой конденсатор. Нужно правильно подключить щупы к выходам прибора в режиме измерения сопротивления, дождаться, пока цифры на дисплее вырастут от нуля до бесконечности.Процесс зарядки конденсатора завершен. Теперь переходим в режим измерения постоянного напряжения, видим значение разности потенциалов на ножках конденсатора (мультиметр выдает в режиме измерения сопротивления). По вольт-амперной характеристике тиристора легко определить, достаточно ли значений для создания тока удержания.

Динисторы проще назвать. Попробуйте открыть ключ. Это зависит от того, хватит ли мощности мультиметра для преодоления преграды.Для гарантированной проверки тиристора лучше собрать отдельную схему. Как показано на картинке. Схема образована следующими элементами:


Почему выбирают питание +5 вольт. Напряжение легко найти на телефонном переходнике (зарядном устройстве). Присмотритесь: есть надпись типа 5V– / 420 mA. Выведите значения напряжения, тока (сразу посмотрите, хватит ли тиристора на удержание). Каждый знаток знает: +5 вольт для подключения к шине USB. Теперь практически любой гаджет, компьютер снабжен портом (в другом формате).Избегайте проблем с питанием. На всякий случай рассмотрим момент поподробнее.

Проверка тиристоров на разъеме мультиметра на транзисторы

Многие задаются вопросом, можно ли прозвонить тиристор мультиметром через штатное гнездо транзисторов лицевой панели, помеченное pnp / npn. Ответ положительный. Вам просто нужно подать правильное напряжение. Коэффициент усиления, отображаемый на дисплее, скорее всего, будет неправильным. Поэтому ориентируйтесь на цифры, избегайте. Посмотрим, как что-то делается.Если тиристор открывается с положительным потенциалом, необходимо подключить его к выводу B (основание) полу-npn. Анод наклеен на штифт С (коллектор), катод — на Е (эмиттер). Мощный тиристор мультиметром проверить вряд ли получится, для микроэлектроники техника подойдет.

Где взять тестер питания

Положение электродов мультиметра

Телефонный адаптер дает ток 100 — 500 мА. Часто этого бывает недостаточно (при необходимости проверить тиристор КУ202Н мультиметром ток разблокировки 100 мА).Где взять еще? Посмотрим на шину USB: третья версия будет выдавать 5 А. Чрезвычайно большой ток для микроэлектроники, ставит под сомнение силовые характеристики интерфейса. Распиновку смотрим в сети. Вот изображение, показывающее расположение типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип A характерен для компьютеров. Самый распространенный. Найдите на переходниках (зарядных устройствах) портативных плееров, iPad. Может использоваться как тиристор цепи тестирования источника питания.
  2. Второй тип B характеризуется скорее как терминальный. Подключены периферийные устройства, такие как принтеры, другое офисное оборудование. Найти как источник питания сложно, игнорируя факт недоступности, авторы проверили макет.

Если перерезать USB-кабель — наверняка многие кинутся убивать старую технику, оторвут хвосты мышам — внутри + 5-вольтовый шнур питания традиционно красный, оранжевый. Информация поможет правильно прозвонить цепь, получить необходимое напряжение.Присутствует на выключенном системном блоке (подключен к розетке). Вот почему свет мыши продолжает гореть. На время теста компу будет достаточно для перехода в режим гибернации. Кстати, напрямую не доступен в Windows 10 (залезть по настройкам вы найдете в управлении питанием).


Отображение USB-порта

Воспользовавшись помощью схемы, проверьте тиристор, не испаряясь. Рабочая точка устанавливается относительно земли порта, поэтому внешние устройства будут играть небольшую роль.Традиционно заземление персонального компьютера привязано к корпусу, куда идет провод входного фильтра гармоник. Цепь +5 вольт, заземление отвязано от шины. Достаточно отключить тестируемую схему от источника питания. Для проверки тиристора нужно будет припаять антенны на каждом выходе. Для подачи питания контрольный сигнал.

Многие ползают по стулу, не понимая одного: тут мы рассказываем, как мультиметром прозвонить тиристор, а тут светодиод плюс все навороты? На место светодиода можно — еще лучше — включить щупы тестера, зарегистрировать ток.Можно использовать небольшое напряжение питания, но в то же время это всегда безопаснее. Что касается персонального компьютера, то он дает широкие возможности для тестирования любых элементов, в том числе тиристоров. Блок питания обеспечивает набор напряжений:

  1. +5 В идет на кулеры, многие другие системы. Собственно стандартное напряжение питания. Провода напряжения красные.
  2. Для питания многих потребителей используется напряжение +12 Вольт. Желтый провод (не путать с оранжевым).
  3. — Осталось 12 вольт для совместимости с RS.Старый добрый COM-порт, через который программируются адаптеры сегодня в промышленных системах. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно имеет напряжение +3,3 В.

Видите, разброс большой, главное актуальный. Электропитание компьютеров варьируется в районе 1 кВт. Открой любой тиристор! Пора заканчивать. Надеюсь, читатели теперь знают, как тиристор совмещается с мультиметром. Иногда приходится повозиться. Вышеупомянутый тиристор КУ202Н имеет структуру pnpn, без блокировки.После исчезновения управляющего напряжения ключ не замыкается. Для выключения светодиода необходимо отключить питание. Разблокировка положительным напряжением. Подходит по выкройке. Единственный ток удержания составляет 300 мА. Случай, когда не всякое зарядное устройство для телефона подходит для эксперимента.

Среди домашних мастеров и умельцев периодически возникает необходимость определения исправности тиристора или симистора, которые широко используются в бытовых приборах для изменения частоты вращения ротора электродвигателей, в регуляторах мощности, осветительной арматуре и в других устройствах.

Как устроен диод и тиристор

Перед тем, как описывать способы проверки, напомним о тиристорном устройстве, которое недаром называют управляемым диодом. Это означает, что оба полупроводниковых элемента имеют практически одно и то же устройство и работают совершенно одинаково, за исключением того, что у тиристора есть ограничение — управление через дополнительный электрод посредством передачи через него электрического тока.

Тиристор и диод пропускают ток в одном направлении, что во многих конструкциях советских диодов обозначается направлением угла треугольника на мнемоническом символе, расположенном непосредственно на корпусе.В современных диодах в керамическом корпусе для маркировки катода обычно наносят кольцевую полоску рядом с катодом.

Проверьте работоспособность и тиристор, пропустив через них ток нагрузки. Для этой цели разрешается использовать лампы накаливания от старых карманных фонариков, нить которых светится от силы тока около 100 мА и менее. При прохождении тока через полупроводник лампа будет гореть, а при его отсутствии — нет.

Подробнее о работе диодов и тиристоров читайте здесь:

Как проверить исправность диода

Обычно для оценки исправности диода используют омметр или другие приборы, которые имеют функцию измерения активного сопротивления.Подавая напряжение на электроды диода в прямом и обратном направлении, они определяют значение сопротивления. С разомкнутым pn. При переходе омметр покажет нулевое значение, а в замкнутом — бесконечное значение.

Если омметр отсутствует, то исправность диода можно проверить при помощи батарейки и лампочки.


Перед проверкой диода таким способом необходимо учесть его мощность. В противном случае ток нагрузки может разрушить внутреннюю структуру кристалла.Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и снизить ток нагрузки до 10-15 мА.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три самых распространенных и доступных в домашних условиях.

Аккумулятор и светильник


При использовании этого метода следует также оценить токовую нагрузку 100 мА, создаваемую лампочкой на внутренних цепях полупроводника, и применить ее ненадолго, особенно для цепей управляющих электродов.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Такой неисправности практически не возникает, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Это займет всего несколько секунд.

При сборке схемы по первому варианту полупроводниковый переход устройства не пропускает ток, и свет не горит.В этом его главное отличие в работе от обычного диода.

Для открытия тиристора достаточно приложить к управляющему электроду положительный потенциал источника. Этот вариант показан на второй диаграмме. Неповрежденное устройство разомкнет внутреннюю цепь и через нее потечет ток. Это укажет на свечение лампочек накаливания.

На третьей диаграмме показано отключение питания от управляющего электрода и прохождение тока через анод и катод.Это связано с удерживанием избыточного тока внутреннего перехода.

Эффект удержания используется в схемах управления мощностью, когда для размыкания тиристора, регулирующего величину переменного тока, подается короткий импульс тока от фазовращателя к управляющему электроду.

Зажигание лампочки в первом случае или отсутствие ее свечения во втором говорят о выходе из строя тиристора. Но потеря свечения при снятии напряжения с контакта управляющего электрода может быть вызвана тем, что величина тока, протекающего через цепь анод-катод, меньше предельного значения удержания.

Обрыв цепи через анод или катод вызывает закрытие тиристора.

Методика испытаний на самодельном приборе

Для снижения риска повреждения внутренних цепей полупроводниковых переходов при проверке тиристоров малой мощности можно подбирать значения токов в каждой цепи. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, рассчитанное на работу от 9-12 вольт. При использовании других напряжений питания следует произвести пересчет значений сопротивления R1-R3.

Рис. 3. Схема устройства для проверки тиристоров

Через светодиод HL1 достаточно тока около 10 мА. При частом использовании устройства для подключения электродов тиристора ВС желательно делать контактные розетки. Кнопка SA позволяет быстро переключать цепь управляющего электрода.

Свечение светодиода перед нажатием кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с помощью тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему.В нем источником тока является аккумулятор устройства, а вместо свечения светодиода используется отклонение стрелки аналоговых моделей или цифровые показания на табло цифровых устройств. При указании большого сопротивления тиристор закрыт, а при малых значениях — открыт.


Здесь те же три этапа тестирования оцениваются с выключенной, кратковременной кнопкой SA и затем снова отключенной. В третьем случае тиристор, вероятно, изменит свое поведение из-за небольшой величины испытательного тока: его недостаточно для удержания.

Низкое сопротивление в первом случае и высокое во втором говорят о нарушениях полупроводникового перехода.

Метод омметра позволяет проверить исправность полупроводниковых переходов без пайки тиристора от большинства печатных плат.

Конструкцию симистора можно представить как состоящую из двух тиристоров, включенных противоположно друг другу. Его анод и катод не имеют строгой полярности, как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить с помощью описанных выше методов тестирования.

Симистор — один из радиоэлементов «семейства» тиристоров. Два других: динистор — это двухэлектродное устройство, тринистор — трехэлектродное устройство. Фактически, симистор также является трехэлектродным устройством, но если в триисторе есть три pn перехода, то в симисторе их четыре. Поперечное сечение структуры кристалла тринистора показано на рис.1 слева и симистор справа.

Благодаря такой конструкции симистора, в отличие от триристора, можно управлять проводимостью в обоих направлениях с помощью одного управляющего электрода. В результате симистор чаще всего используется как ключ в цепях переменного тока.

Конструктивно симистор выполнен в том же корпусе, что и тринистор (рис. 2). Аналогично тринистору, одна крайняя область с проводимостью n-типа подключается к корпусу и служит выводом 2.Другая крайняя область (n-тип) подключена к выводу 1. Средняя область (p-тип) подключена к выходу управляющего электрода.

При работе в каком-либо устройстве для размыкания симистора управляющий импульс подается на управляющий электрод относительно контакта 1, и полярность импульса зависит от полярности коммутируемого напряжения, приложенного между контактами 1 и 2. Если напряжение на выводе 2 положительное, симистор открывается импульсом напряжения любой полярности. При отрицательном напряжении на этом выводе управляющий импульс должен иметь отрицательную полярность.Выключение (замыкание) симистора осуществляется, как и в случае с тристором, снятием напряжения с вывода 2.

Разобравшись с устройством и работой симистора, теперь легко научиться проверять это с помощью простой приставки (рис. 3).


Переключатели SA1 и SA2 изменяют полярность управляющего и коммутируемого напряжения соответственно. Кнопка SB1 служит для подачи управляющих импульсов, а SB2 — для отключения симистора. Индикатор симистора — лампа накаливания HL1, рассчитанная на напряжение, которое приложено к выводу 2 симистора.Кормить приставку необходимо из двух отдельных источников.

Для крепления навесных деталей можно использовать любой подходящий корпус из изоляционного материала, например пластиковую мыльницу (рис. 4).

При указанном на схеме положении подвижных контактов переключателей и нажатии кнопки SB1 симистор размыкается, световой индикатор загорается. Затем нажимаем кнопку SB2, симистор замыкается, лампа гаснет. Далее подвижные контакты переключателя SA1 переводят в противоположное положение и снова нажимают кнопку SB1.Если симистор исправен, лампа будет мигать.

С помощью домашнего тестера (мультиметра) можно проверить самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой, это настоящая находка. Например, проверка тиристора мультиметром может избавить вас от необходимости искать новую деталь при ремонте электрооборудования.

Это полупроводниковый прибор, выполненный по классической монокристаллической технологии. На кристалле их три или больше. pn переход с диаметрально противоположными установившимися состояниями.Основное применение тиристоров — электронный ключ. Эти радиоэлементы можно эффективно использовать вместо механических реле.

Включение регулируемое, относительно плавное и без дребезга контактов. Нагрузка в основном направлении открытия p — n переходов контролируется в режиме управления, можно контролировать скорость увеличения рабочего тока.

Кроме того, тиристоры, в отличие от реле, отлично интегрируются в электрические схемы любой сложности. Отсутствие искрящихся контактов позволяет использовать их в системах, где шум переключения недопустим.

Деталь компактная, доступна в различных форм-факторах, в том числе для установки на радиаторы охлаждения.

Тиристоры управляются внешним воздействием:

  • На управляющий электрод подводится электрический ток;
  • Луч света, если используется фототиристор.

В этом случае, в отличие от того же реле, нет необходимости постоянно посылать управляющий сигнал. Рабочий p-n переход будет открыт даже после окончания подачи управляющего тока.Тиристор закрывается, когда рабочий ток, протекающий через него, падает ниже порога удержания.

Тиристоры доступны в различных модификациях, в зависимости от способа управления и дополнительных возможностей.

  • Диод прямой проводимости;
  • Диод обратной проводимости;
  • Диод симметричный;
  • Триод прямой проводимости;
  • Триод обратной проводимости;
  • Асимметричный триод.

Существует разновидность тиристора на триоде с двунаправленной проводимостью.

Что такое симистор и чем он отличается от классических тиристоров?

Симистор (или «симистор») — особая разновидность триодного симметричного тиристора. Основное преимущество — возможность проводить ток на рабочих pn переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструкция такие же, как у других тиристоров. При подаче тока менеджера pn соединение разблокируется и остается открытым до тех пор, пока рабочий ток не уменьшится.
Популярное применение симисторов — стабилизаторов напряжения в системах освещения и бытовых электроинструментах.

Работа этих радиодеталей напоминает принцип транзисторов, но детали не взаимозаменяемы.

Разобравшись, что такое тиристор и симистор, научимся проверять эти детали на работоспособность.

Как вызвать тиристор мультиметром?

Сразу оговорюсь — исправность тиристора можно проверить без тестера.Например, с помощью лампочки от фонарика и пальчикового аккумулятора. Для этого последовательно включите источник питания, соответствующий напряжению лампочки, рабочих выводов тиристора и лампочки.

Важно! Не забывайте, что обычный тиристор проводит ток только в одном направлении. Поэтому соблюдайте полярность.

При подаче управляющего тока (достаточно батареек АА) — светится. Итак, схема управления в порядке.Затем отключите аккумулятор, не отключая источник рабочего тока. Если pn-переход в порядке и установлен определенный ток удержания, свет останется включенным.

Если у вас нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.

    1. Переключатель тестера установлен в режим тонового набора. При этом на проволочных щупах появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает pn переход, поэтому сопротивление на выводах будет высоким, ток не течет.На дисплее мультиметра отображается «1». Мы убедились, что рабочий п-переход не нарушен;
    2. Проверить открытие перехода. Для этого соедините управляющий выход с анодом. Тестер дает ток, достаточный для размыкания спая, и сопротивление резко падает. На дисплее появляются цифры, отличные от единицы. Тиристор «открытый». Таким образом, мы проверили работоспособность элемента управления;

  1. Размыкаем управляющий контакт.При этом сопротивление должно снова стремиться к бесконечности, то есть на табло мы видим «1».

Почему тиристор не оставался открытым?

Дело в том, что мультиметр не выдает тока, достаточного для срабатывания тиристора по «току удержания». Этот пункт мы не можем проверить. Однако оставшиеся контрольные точки говорят о хорошем состоянии полупроводникового прибора. Если поменять полярность — тест не пройдет. Таким образом, убеждаемся, что обратного пробоя нет.

Вы можете проверить чувствительность тиристора. В этом случае переводим переключатель тестера в режим омметра. Измерения производятся по ранее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начнем с предела измерения вольтметра «х1».

Чувствительные тиристоры сохраняют разомкнутое состояние при отключении управляющего тока, что фиксируем на приборе. Увеличьте предел измерения до «x10». В этом случае ток на измерительных выводах тестера уменьшается.

Если при отключении управляющего тока переход не замыкается, мы продолжаем увеличивать предел измерения до тех пор, пока тиристор не сработает по току удержания.

Важно! Чем меньше ток удержания, тем чувствительнее тиристор.

При проверке деталей из одной партии (или с одинаковыми характеристиками) выбирайте более чувствительные элементы. Такие тиристоры имеют более гибкие возможности управления, соответственно, более широкую область применения.

Освоив принцип проверки тиристора — несложно догадаться, как проверить симистор мультиметром.

Важно! При наборе необходимо учитывать, что этот полупроводниковый ключ имеет симметричную двустороннюю проводимость.

Проверка симистора мультиметром

Схема подключения для поверки аналогична. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов с одной полярностью переключаем щупы тестера на обратную полярность.

Рабочий симистор должен показать очень похожие результаты тестирования.Необходимо проверить открытие и удержание p — n перехода в обоих направлениях по всей шкале измерительного диапазона мультиметра.

Если радиокомпонент, который необходимо проверить, находится на печатной плате — отпаивать его для проверки не нужно. Достаточно отпустить управляющий выход. Важный! Не забудьте обесточить проверяемый электроприбор.

В заключение посмотрите видео: Как проверить тиристор мультиметром.

Для коммутации электрических сетей переменного тока используются различные элементы. Чаще всего используются мощные симисторы, которые необходимы для конструкции трансформаторов и зарядных устройств.

Симисторы — это разновидность тиристоров, аналогичных кремниевым выпрямителям в корпусе. Но в отличие от тиристоров, которые являются однонаправленными устройствами, т.е. они пропускают ток только в одном направлении, а симисторы — двусторонние. С их помощью можно передавать ток в обоих направлениях. Они имеют пять тиристорных слоев, которые снабжены электродами.На первый взгляд отечественные симисторы напоминают pn структуру, но имеют несколько участков с проводимостью n-типа. Последняя область, расположенная после этого слоя, имеет прямое соединение с электродом, что обеспечивает высокую проводимость сигнала. Иногда их также сравнивают с выпрямителями, но стоит помнить, что диоды передают электрический сигнал только в одном направлении.

Фото — использовать тиристор

Симистор

считается идеальным устройством для использования в коммутационных сетях, поскольку он может контролировать ток через обе половины переменного цикла.Тиристор управляет только половиной цикла, а вторая половина сигнала не используется. Благодаря такой особенности работы симистор отлично передает сигналы от любых электрических устройств; вместо реле часто используется симистор. Но пока этот симистор редко используется в сложных электрических устройствах, таких как трансформаторы, компьютеры и т. Д.


Фото — симистор

Видео: как работает симистор

Принцип действия

Принцип работы симистора очень похож на тиристорный, но его легче понять, исходя из работы тринисторного аналога этого компонента электрических сетей.Обратите внимание, что четвертый полупроводниковый компонент разделен, что позволяет выполнять следующие функции:

  1. Монитор катода и анода;
  2. При необходимости меняют их местами, что позволяет менять полярность работы.

В этом случае работу устройства можно рассматривать как комбинацию двух противоположно направленных тиристоров, но работающих по полному циклу, т.е. не обрывающих сигналы. Обозначение на схеме, соответствующее двум подключенным тиристорам:

Фото — тринистор аналог симистора

Согласно чертежу на электрод, которым является контроллер, передается сигнал, позволяющий размыкать контакт детали.В тот момент, когда положительное напряжение на аноде, соответственно на катоде станет отрицательным, электрический ток начнет протекать через тринистор, который находится на схеме слева. Исходя из этого, если полярность полностью изменена, что меняет местами заряды катода и анода, ток, передаваемый через контакты, будет проходить через правый тринистор.

Здесь последний слой на симисторе отвечает за полярность напряжения. Он контролирует напряжение на контактах и, сравнивая его, направляет ток на определенный триристор.Прямо пропорционально этому, если сигнал не подан, то все тринисторы замкнуты и устройство не работает, то есть не передает никаких импульсов.

Если есть сигнал, есть подключение к сети и ток должен куда-то течь, то симистор в любом случае проводится полярностью направления, в данном случае продиктованным зарядом и полярностью полюсов, катод и анод.

Обратите внимание: на приведенной выше диаграмме показана вольт-амперная характеристика (ВАХ) симистора на Рисунке 3.Каждая из кривых имеет параллельное направление, но в другом направлении. Они повторяют друг друга под углом 180 градусов. Такой график говорит о том, что симистор является аналогом динистора, но при этом участки, через которые динисторы не передают сигнал, очень легко преодолеваются. Параметры устройства можно регулировать, подавая ток разного напряжения, это позволит разблокировать контакты в нужном направлении, просто изменив полярность сигнала. На чертеже места, которые могут отличаться, отмечены пунктирными линиями.


Фото — симисторы

Благодаря этому ВАХ становится понятно, почему стабилизированный тиристор получил такое название. Симистор — означает «симметричный» тиристор, в некоторых учебниках и магазинах его можно назвать симистором (зарубежный вариант).

Сфера использования

Двунаправленность делает симисторы очень удобными переключателями для цепей переменного тока, позволяя им управлять большими токами электрической энергии, проходящей через небольшие контактные полюса. Кроме того, вы даже можете контролировать процентное соотношение индуктивного тока нагрузки.


Фото — работа симистора

Устройства используются в радиотехнике, электротехнике, механике и других отраслях, где может потребоваться контроль тока. Оптосимисторы часто используются в системах охранной сигнализации и диммерах, где для корректной работы устройств требуется полный цикл, а не полпериода. Хотя довольно часто использование этой радиокомпоненты оказывается неэффективным. Например, для работы небольшого микроконтроллера или трансформатора иногда лучше подключить тиристоры малой мощности, которые будут одинаково обеспечивать работу обоих периодов.

Проверка, распиновка и использование симисторов

Для того, чтобы использовать прибор в работе, нужно уметь проверять симистор мультиметром или «прозвонить» его. Для проверки необходимо оценить характеристики контролируемых кремниевых диодов. Такие выпрямители позволяют скорректировать нужные показания и проверить. Отрицательный контакт омметра подключается к катоду, а положительный — к аноду. После нужно одеть индикатор омметра на единицу, а электрод сравнения соединить с выходом анода.Если данные будут в пределах от 15 до 50 Ом, то деталь работает нормально.


Фото — управление световыми симисторами

Но при этом при отключении контактов от анода омметр должен оставаться на приборе. Убедитесь, что простой измерительный прибор не показывает остаточного сопротивления, иначе он укажет, что деталь не работает.

В повседневной жизни симисторы часто используются для создания приборов, продлевающих срок службы различных устройств.Например, для ламп накаливания или счетчиков можно сделать регулятор мощности (нужен тиристор MAC97A8 или ТК).


Фото — схема регулятора мощности на симисторе

На схеме показано, как собрать регулятор мощности. Обратите внимание на элементы DD1.1.DD1.3, где указан генератор, за счет этой части вырабатывается около 5 импульсов, которые представляют собой полупериоды одиночного сигнала. Импульсы управляются резисторами, а выпрямительный диодный транзистор контролирует момент включения симистора.


Фото — Измерение симистора

Этот транзистор открыт, исходя из этого, сигнал подходит для входа генератора, при этом симисторы и остальные транзисторы закрыты. Но если в момент размыкания контактов состояние генератора не меняется, то кумулятивными элементами будет генерироваться небольшой импульс для запуска цоколя. Такую схему диммера на симисторе можно использовать для управления работой осветительных приборов, стиральной машины, оборотов пылесоса или ламп накаливания с датчиком движения.Используйте тестер, чтобы проверить работоспособность схемы и можете ли ее использовать.


Фото — работа симистора

Для улучшения системы можно организовать управление симистором через оптрон, чтобы элемент можно было запускать только после сигнала. Учтите, что при пролистывании барабана движения происходят очень резко, значит неисправен электронный модуль. Чаще всего горит симистор, импортные проводники часто не выдерживают скачков напряжения.Чтобы заменить его, просто выберите ту же деталь.


Фото — тиристорное зарядное устройство

Аналогично по схеме можно собрать зарядное устройство на симисторе, в зависимости от требований нужно просто купить маломощные или силовые детали КУ208Г, КР1182ПМ1, Z0607, BT136, BT139 (BTB — VTB, BTA — BTA будет тоже работают).

Проверить тиристор мультиметром: Как проверить тиристор мультиметром на примере прозвона ку202н

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *