Расчет площади воздуховодов и фасонных изделий
Изготовление воздуховодов по вашим чертежам на оборудовании «SPIRO» (Швейцария) и «RAS» (Германия) или продажа готовых; наши воздуховоды соответствуют ГОСТу и СНиПу. Звоните!
При проектировании системы вентиляции необходимо провести точный расчет площади, т.к. от этого зависят показатели эффективности системы: количество и скорость транспортируемого воздуха, уровень шума и потребляемая электроэнергия.
Обратите внимание! Расчет площади сечения и иных показателей системы вентиляции – достаточно сложная операция, требующая знаний и опыта, поэтому мы настоятельно рекомендуем доверить ее специалистам!
- raschet ploshhadi sechenija
- Raschet ploshhadi vozduhovodov i fasonnyh izdelij
- Raschet ploshhadi vozduhovodov
Расчет площади труб
Может производиться согласно требованиям СанПиН, а также в зависимости от площади помещения и количества пользующихся им людей.
- Расчет для изделий прямоугольного сечения
Применяется простая формула: A × B = S, где A – ширина короба в метрах, B – его высота в метрах, а S – площадь, в квадратных метрах. - Расчет для изделий круглого сечения
Применяется формула π × D2/4 = S, где π = 3,14, D – диаметр в метрах, а S – площадь, в квадратных метрах.
Пластинчатые, трубчатые, плоские, из оцинкованной и нержавеющей стали. Соединение ниппельное, фланцевое и на шине (№20 и 30). В наличии и на заказ.
Расчет площади фасонных деталей
Расчет площади фасонных деталей по формулам без соответствующего образования и опыта практически невозможен. Для вычислений, как правило, используются специализированные программы, в которые вводятся первичные данные.
Расчет площади сечения
Данный параметр является ключевым, так как определяет скорость движения воздушного потока. При уменьшении площади сечения скорость возрастает, что может привести к появлению постороннего шума, уменьшение площади и снижение скорости – к застойным явлениям, отсутствию циркуляции воздуха и появлению неприятных запахов, плесени.
Формула: L × k/w = S, где Д – расход воздуха в час, в кубометрах; k – скорость движения воздушного потока, w – коэффициент со значением 2,778, S – искомая площадь сечения в м2.
Расчет скорости воздушного потока в системе вентиляции
При расчете необходимо учитывать кратность воздухообмена. Можно воспользоваться таблицей, но отметим, что значения в ней округляются, поэтому, если необходим точный расчет, лучше произвести его по формуле: V/W = N, где V – объем воздуха, поступающий в помещение за 1 час, в м3, W – объем комнаты, в м3, N – искомая величина (кратность).
Формула для количества используемого воздуха: W × N = L, где W – объем помещения, в м3, N- кратность воздухообмена, L – количество потребляемого воздуха в час.
Скорость рассчитывается по формуле: L / 3600 × S = V, где L – количество потребляемого воздуха в час, в м3, S – площадь сечения, в м3, V – искомая скорость, м/с.
Расчет площади воздуховодов различной формы и фасонных изделий
Содержание статьи
Производительность системы вентиляции напрямую зависит от правильности ее проектирования. Важнейшую роль в этом играет верный расчет площади воздуховодов. От него зависит:
- Беспрепятственное движение воздушного потока в нужных объемах, его скорость;
- Герметичность системы;
- Уровень шума;
- Расход электроэнергии.
Воздуховод
Для того чтобы узнать все нужные значения, можно обратиться в соответствующую компанию или же воспользоваться специальными программами (их можно легко отыскать в интернете). Однако, при необходимости, найти все необходимые параметры возможно и самостоятельно. Для этого существуют формулы.
Использование их довольно просто. Вам также достаточно вписать параметры вместо соответствующих букв и найти результат. Формулы помогут вам отыскать точные значения, с учетом всех индивидуальных факторов. Обычно они применяются при инженерных работах по проектированию системы вентиляции.
Вернуться к содержанию ↑Как найти верные значения
Для того чтобы произвести расчет площади сечения нам потребуется информация:
- О минимально необходимом воздушном потоке;
- О предельно возможной скорости воздушного потока.
Для чего нужен правильный расчет площади:
- Если скорость потока будет выше положенного предела, то это станет причиной падения давления. Эти факторы, в свою очередь, повысят расход электроэнергии;
- Аэродинамический шум и вибрации, если все выполнено верно, будут в пределах нормы;
- Обеспечение нужного уровня герметичности.
Воздуховод в разборе
Это также позволит повысить эффективность системы, поможет сделать ее долговечной и практичной. Нахождение оптимальных параметров сети – принципиально важный момент в проектировании. Только в этом случае система вентиляции прослужит долго, отлично справляясь со всеми своими функциями. Особенно это актуально для больших помещений общественного и производственного значения.
Чем большим будет сечение, тем ниже будет скорость воздушного потока. Это также уменьшит аэродинамический шум и расход электроэнергии. Но есть и минусы: стоимость таких воздуховодов будет выше, и конструкции не всегда можно установить в пространство над навесным потолком. Однако это возможно с прямоугольными изделиями, высота которых меньше. В то же время изделия круглой формы проще устанавливаются и обладают важными эксплуатационными преимуществами.
Что именно выбрать, зависит от ваших требований, приоритета экономии электроэнергии, самих особенностей помещения. Если вы желаете сэкономить электроэнергию, сделать шум минимальным и у вас есть возможность установить крупную сеть, выбирайте систему прямоугольной формы. Если же приоритетом является простота установки или в помещении сложно установить конструкции прямоугольного типа, вы можете выбрать изделия круглого сечения.
Расчет площади выполняется по следующей формуле:
Sc = L * 2, 778/V
Sc здесь – площадь сечения;
L – расход воздушного потока в метрах в кубе/час;
V – скорость воздушного потока в воздуховоде в метрах в секунду;
2,778 – необходимый коэффициент.
Трубы для воздуховода
После того, как расчет площади выполнен, вы получите результат в квадратных сантиметрах.
Фактическую площадь воздуховодов помогут определить следующие формулы:
Для круглых: S = Пи * D в квадрате /400
Для прямоугольных: S = A * B /100
S здесь – фактическая площадь сечения;
D – диаметр конструкции;
A и B – высота и ширина конструкций.
Как определить потери давления
Расчет сопротивления сети позволяет принять во внимание потери давления. Поток воздуха, во время движения, испытывает определенное сопротивление. Для его преодоления важно соответствующее давление. Давление это измеряется в Па.
Для того чтобы узнать нужный параметр, потребуется следующая формула:
P = R * L + Ei * V2 * Y/2
R здесь – удельные сокращения давления на трение в сети;
L – протяженность воздуховодов;
Ei – коэффициент местных потерь в сети в сумме;
V – скорость воздуха на рассматриваемом участке сети;
Y – плотность воздуха.
R можно узнать в соответствующем справочнике. Ei зависит от местного сопротивления.
Как узнать оптимальную мощность нагревателя воздуха
Для того чтобы узнать оптимальную мощность нагревателя воздуха, требуются показатели нужной температуры воздуха и самой минимальной температуры снаружи помещения.
Составные элементы воздуховода
Минимальная температура в системе вентиляции – 18 градусов. Температура снаружи помещения зависит от климатических условий. Для квартир оптимальная мощность нагревателя обычно составляет от 1 до 5 кВт, для офисных помещений – 5-50 кВт.
Точный расчет мощности нагревателя в сети позволит выполнить следующая формула:
P = T * L * Cv /1000
P здесь – мощность нагревателя в кВт;
T – разность температуры воздуха внутри и снаружи помещения. Это значение можно найти в СНиП;
L – производительность системы вентиляции;
Cv – теплоемкость, равная 0,336 Вт*ч/метры квадратные/градус по Цельсию.
Дополнительная информация
Для того чтобы узнать нужные параметры фасонных изделий и самой конструкции, не обязательно самостоятельно выполнять расчет частей сети вентиляции. Для нахождения всех значений существуют специальные программы. Вам достаточно ввести требуемые числа, и вы получите результат за доли секунды.
Рассчитываются значения креплений, фасонных частей, воздуховодов обычно инженерами, занимающимися проектированием систем вентиляции. Но и они применяют таблицы, в которых имеются все требуемые коэффициенты, формулы, значения.
Также существует специальная таблица эквивалентных диаметров воздуховодов. Это таблица диаметров воздуходувов круглой формы, в которых снижение давления на трение равна снижению давления в конструкциях прямоугольной формы. Эквивалентный диаметр конструкции воздуходува требуется тогда, когда необходимо произвести расчет прямоугольных воздуходувов, и при этом применяется таблица для изделий круглой формы.
Стальные трубы для воздуховода
Известно три способа узнать эквивалентное значение:
- Ориентируясь на скорость;
- По поперечному сечению;
- По расходу.
Все эти значения связаны с шириной и другими значениями воздуховодов. Для каждого из параметров применяется своя методика пользования таблицами. Итоговый результат – значение потери давления на трение. Вне зависимости от того, какую методику вы применили, результат получается одинаковым.
В интернете вы легко сможете найти таблицы, программы, справочники, необходимые для подсчета площади и иных параметров самих конструкций, креплений. Самое простое – воспользоваться специальными программами. В этом случае от вас требуется только ввод нужных значений. При этом результаты вы получите довольно точные.
Вернуться к содержанию ↑Пример создания воздуховодов
Автор | Поделитесь | Оцените | Виктор Самолин |
---|
Методика. Площадь воздуховодов MagiCAD. Andrey Shirshov, PDF Free Download
Все прототипы В года
1. Прототип задания B9 ( 245359) Все прототипы В5 2013 года Найдите квадрат расстояния между вершинами и прямоугольного параллелепипеда, для которого,,. 2. Прототип задания B9 ( 245360) Найдите расстояние
ПодробнееИВЕНТ ПРАЙС-ЛИСТ 2018
ИВЕНТ ПРАЙС-ЛИСТ 2018 ОГЛАВЛЕНИЕ ВОЗДУХОВОД КРУГЛОГО СЕЧЕНИЯ СПИРАЛЬНОНАВИВНОЙ ИЗ ОЦИНКОВАННОЙ СТАЛИ… 2 ВОЗДУХОВОД КРУГЛОГО СЕЧЕНИЯ ПРЯМОШОВНЫЙ ИЗ ОЦИНКОВАННОЙ СТАЛИ… 3 ОТВОДЫ КРУГЛОГО СЕЧЕНИЯ ИЗ ОЦИНКОВАННОЙ
ПодробнееВоздуховоды Общие сведения
Воздуховоды Общие сведения Воздуховоды (прямые и фасонные части) прямоугольного и круглого сечения изготавливаются по видам и размерному ряду принятому в : — ВСН 353 86 «Проектирование и применение воздуховодов
ПодробнееВсе прототипы задания В9 (2013)
Все прототипы задания В9 (2013) ( 245359) Найдите квадрат расстояния между вершинами и прямоугольного параллелепипеда, для которого,,. ( 245360) Найдите расстояние между вершинами и прямоугольного параллелепипеда,
ПодробнееВоздуховоды круглого сечения
Воздуховоды Воздуховоды (прямые и фасонные части) прямоугольного и круглого сечения изготавливаются по видам и размерному ряду принятому в : — ВСН 353-86 «Проектирование и применение воздуховодов из унифицированных
Подробнее7. Задачи по стереометрии
РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ 7 Задачи по стереометрии методические указания для абитуриентов физического факультета Ростов-на-Дону 00 Печатается по решению учебнофакультета РГУ методической комиссии
ПодробнееВоздуховод круглый -2- Без фланцев. На фланцах. «Бабочка» Площадь живого сечения, Площадь поверхности 1 п.м., Вес 1 п.м. Толщина стали s, Цена,
Воздуховод круглый Диаметр Толщина стали s, Площадь поверхности 1 п.м., Площадь живого сечения, Вес 1 п.м. d, мм мм м 2 м 2 кг / м.п. 100 0,5 0,32 0,008 1,2 156 125 0,5 0,4 0,012 1,4 195 160 0,5 0,51 0,02
ПодробнееRunicom tel.:+7(495) Page 1 of 20
ВОЗДУХОВОДЫ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ ИЗ ОЦИНКОВАННОЙ СТАЛИ Толщина металла, Прямой участок длиной L = 1250 Длина прямого участка, Прямой участок длиной свыше 1250 в руб/м 2 Прямой участок длиной менее 1250
Подробнее3 ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ СПРАВОК
Глава ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ СПРАВОК.. Геометрия Треугольники. Два треугольника равны, если =, b = b, γ = γ ; c = c, α = α, β = β ; =, b = b, c = c.. Два треугольника подобны, если α = α, β = β ; b =, b
ПодробнееТригонометрические уравнения
Тригонометрические уравнения С б) Укажите корни, принадлежащие отрезку. а) Решите уравнение б) Укажите корни уравнения, принадлежащие отрезку а) Решbте уравнение. б) Укажите корни этого уравнения, принадлежащие
ПодробнееПрямоугольный параллелепипед
ЗАДАНИЕ 10 Стереометрия Куб 1.Площадь поверхности куба равна 18. Найдите его диагональ. 2. Диагональ грани куба равна 2 6. Найдите диагональ куба. 3. Диагональ грани куба равна 6. Найдите диагональ куба.
ПРЯМОЙ И НАКЛОННЫЙ КОНУС
ПРЯМОЙ ЦИЛИНДР Пусть в пространстве заданы две параллельные плоскости и. F круг в одной из этих плоскостей, например. Рассмотрим ортогональное проектирование на плоскость. Проекцией круга F будет круг
ПодробнееМногогранники. Призма
Справка В9 Многогранники Многогранник это такое тело, поверхность которого состоит из конечного числа плоских многоугольников. Призма Призмой называется многогранник, который состоит из двух плоских многоугольников,
ПодробнееЗадачи по с т е р е о м е т р и и
Задачи по с т е р е о м е т р и и Ермак Елена Анатольевна, доктор педагогических наук, профессор кафедры математического анализа и методики обучения математике Псковского государственного университета
ПодробнееСХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ
СХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ 1. Найти область определения функции.. Исследовать четность и периодичность функции. 3. Исследовать точки разрыва, найти вертикальные асимптоты. 4. Найти наклонные асимптоты
ПодробнееПрайс-лист на ВЕНТИЛЯЦИЮ
Прайс-лист на ВЕНТИЛЯЦИЮ Содержание 1. Прямые участки 2. 3. Сэндвич нержавеющая сталь 4. Отвод 5. Переход 6. Тройник 7. Врезка, Заглушка, Нипель 8. Гибкая вставка, Дефлектор, Обратный клапан 9. Дросель-клапан,
ПодробнееВсе прототипы заданий В года
1. Прототип задания B13 ( 27054) выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины. Все прототипы заданий В13
Задание 8, 14. Стереометрия
Задание 8, 4. Стереометрия Основные определения Аксиомы стереометрии Теорема. Через любые три точки, не лежащих на одной прямой, проходит плоскость, и притом только одна. Теорема. Если две точки прямой
ПодробнееВсе прототипы заданий года
1. Прототип задания 12 ( 27064) Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы. Все прототипы заданий 12
ПодробнееСОДЕРЖАНИЕ:
1 СОДЕРЖАНИЕ: ВОЗДУХОВОДЫ…….. 2 — Воздуховоды и фасонные детали круглого сечения…….. 3 — Зонты круглые……. 11 — Дефлектора круглые…. 12 — Насадки с водоотводящим кольцом…….. 13 — Вставки
ПодробнееКалендарно — тематический план
Календарно — тематический план ГЕОМЕТРИЯ Класс 11 Годовое количество часов 68 Количество часов в неделю — 2 Учебный год — 2013 2014 Учитель Беликова Галина Ивановна МКОУ «Борятинская СОШ» Согласовано зам.
ПодробнееВоздуховоды прямоугольного сечения
Воздуховоды прямоугольного сечения Из оцинкованной стали Цена в руб/м 2 Толщина металла, мм Прямой участок 0,55 без фланцев 306 0,55 на фланцах (шина No20) 379 0,7 без фланцев 336 0,7 на фланцах (шина
ПодробнееПрайс-лист на ВЕНТИЛЯЦИЮ
Прайс-лист на ВЕНТИЛЯЦИЮ Содержание 1. Прямые участки 2. 3. Сэндвич нержавеющая сталь 4. Отвод 5. Переход 6. Тройник 7. Врезка, Заглушка, Нипель 8. Гибкая вставка, Дефлектор, Обратный клапан 9. Дросель-клапан,
Тест 250. Отрезок. Длина
Тест 250. Отрезок. Длина Длина отрезка равна 1, если он является: 1. высотой равностороннего треугольника со стороной 2; 2. третьей стороной треугольника, в котором две другие стороны равны 1 и 2, а угол
ПодробнееВоздуховоды и фасонные изделия
28.12.2018 Воздуховоды и фасонные изделия ООО «СПН-Полимер» Воздуховоды круглого и прямоугольного сечения из полипропилена (ПП-С, ПП-Г) полиэтилена (ПНД) поливинилхлорида (ПВХ) Компания ООО «СПН — Полимер»
ПодробнееВсе прототипы заданий В года
1. Прототип задания B13 ( 27064) Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы. Все прототипы заданий
ПодробнееВоздуховоды и фасонные изделия
Воздуховоды и фасонные изделия Оцинкованные прямоугольные воздуховоды на фланце из шинорейки Прямоугольные воздуховоды из углеродистой стали Толщина стали,мм /Шина Размер изделия / Цена A,B 150, L>1250
ПодробнееВсе прототипы задания В11 (2013)
Все прототипы задания В11 (2013) ( 25541) Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). ( 25561) Найдите площадь поверхности многогранника, изображенного
ПодробнееТехнический комментарий
СОДЕРЖАНИЕ Технический комментарий Ниппельное соединение воздуховодов Заказ воздуховодов Прямой участок Отвод 900 Отвод 600 Отвод 450 Отвод 300 Отвод 150 Переходы Тройник Ниппель Муфта Врезка круглая Заглушка
ПодробнееПрограммы испытаний по математике
Программы испытаний по математике 1. Основные математические понятия и факты Арифметика, алгебра и начала анализа Натуральные числа (N). Простые и составные числа. Делитель, кратное. Наибольший общий делитель,
ПодробнееТест по теме «Задачи стереометрии»
Тест по теме «Задачи стереометрии» Тест составлен на основе учебника «Геометрия, 10-11 класс (базового и профильного уровней ) / Л.С. Атанасян и др. — М.: «Просвещение», 2010. Аннотация: Задачи теста соответствуют
ПодробнееОсновные определения, теоремы и формулы планиметрии.
Основные определения, теоремы и формулы планиметрии. Обозначения: AВС треугольник с вершинами А, B, С. а = BC, b = AС, с = АB его стороны, соответственно, медиана, биссектриса, высота, проведенные к стороне
ПодробнееСтереометрия: комбинации тел.
А.С. Крутицких и Н.С. Крутицких. Подготовка к ЕГЭ по математике. http://matematikalegko.ru Открытый банк заданий ЕГЭ по математике http://mathege.ru Стереометрия: комбинации тел. 27041. Прямоугольный параллелепипед
ПодробнееТаблица данных отводов
|
Расчет площади изделий вентиляционных систем от ВСК в Ростове-на-Дону с доставкой от компании ВСК
круглый воздуховод
квадратный воздуховод
отвод круглого сечения
отвод квадратного сечения
переход круглого сечения
переход с прямоугольного на круглое сечения
переход с прямоугольного на прямоугольное сечения
тройник круглого сечения
тройник круглого сечения с прямоугольным отводом
тройник прямоугольного сечения с круглым отводом
тройник прямоугольного сечения с прямоугольным отводом
заглушка круглая
заглушка квадратная>
утка со смещением в 1-ой плоскости
утка со смещением в 2-х плоскостях
зонт островного типа
зонт пристенного типа
Круглый зонт
Квадратный зонт
Прямоугольный зонт
Дефлектор
Как посчитать площадь воздуховода прямоугольного сечения, формула
Перед созданием вентиляционной системы особое значение уделяется правильной планировке и расчету всех необходимых параметров. Наиболее важным из таких параметров считается площадь будущего воздуховода. Чтобы выполнить подобную задачу квалифицированные мастера учитывают такие параметры, как:
- — объемы воздуха;
- — скорость воздушных масс;
- — потери давления.
Количество материалов
Выполняются подобные расчеты с целью определения количества требуемых материалов. Это зависит от:
- — габаритов канала;
- — количества комнат;
- — конструктивных особенностей будущей вентиляционной системы.
Измеряя величину сечения, необходимо учесть особо важную деталь. Чем больше такая величина, тем более медленно будут двигаться по трубам воздушные массы. Многие неопытные домовладельцы не знают, как посчитать площадь воздуховода прямоугольного сечения. Профессиональные мастера используют для подобной задачи специальную формулу. Системы с высокими показателями сечения отличаются низким показателем аэродинамического шума. Следовательно, принудительная вентиляция в подобных системах потребует меньших расходов на электроэнергию.
Каждая проектируемая вентиляционная система имеет особые:
- — базовые габариты;
- — конфигурацию;
- — дополнительные элементы;
- — конструкцию.
Перечисленные критерии необходимо учесть при подсчете суммарной площади требуемого материала, с использованием которого будет создаваться воздуховод. Прямоугольные конструкции вентиляционных систем требуют определения:
- — суммарной длины;
- — высоты;
- — ширины.
Полученные показатели позволяют специалистам выбрать оптимальное количество материалов. Общие подсчеты также предполагают учет:
- — полуотводов;
- — отводов.
Перечисленные детали могут иметь различную конфигурацию. Если круглые элементы требуют знания диаметра будущего воздуховода, то для вычисления площади прямоугольных систем, необходим учет:
- — высоты отвода;
- — угла поворота;
- — ширины изделия.
Любой подобный расчет предполагает использование специалистом конкретной формулы. Для обустройства качественной вентиляционной системы опытные мастера чаще всего выбирают оцинкованные фасонные элементы и воздуховоды, обладающие продленным ресурсом. Расчет площади считается наиболее важным параметром при сооружении прямоугольной вентиляции. Полученные показатели позволяют профессионалам создавать оптимальные системы, которые прослужат многие годы.
Калькуляторы для расчета площади — ООО ГОТИКА
Расчет площади поверхности трубы позволяет быстро определить объем работ и расчетное количество материалов.
Воздуховоды
№ 1
Площадь воздуховода круглого сечения
Тип врезки ПрямаяКонуснаяС сиделкой
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце НетФланец
Результаты расчета:
№ 2
Площадь воздуховода прямоугольного сечения
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
Отводы
№ 3
Площадь отвода круглого сечения
Угол α 90°45°60°30°15°мм
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце НетФланец
Результаты расчета:
№ 4
Площадь отвода прямоугольного сечения
Угол α 90°45°60°30°15°мм
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
Переходы
№ 5
Площадь перехода круглого сечения
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце НетФланец
Результаты расчета:
№ 6
Площадь перехода с прямоугольного на круглое сечение
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаШина-ФланецНет
Результаты расчета:
№ 7
Площадь перехода прямоугольного сечения
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
Тройники
№ 8
Площадь тройника круглого сечения
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце НетФланец
Результаты расчета:
№ 9
Площадь тройника круглого сечения с прямоугольной врезкой
Если значение L = 0, Длина рассчитывается автоматически
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаШина-ФланецНет
Результаты расчета:
№ 10
Площадь тройника прямоугольного сечения с круглой врезкой
Если значение L = 0, Длина рассчитывается автоматически
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаШина-ФланецНет
Результаты расчета:
№ 11
Площадь тройника прямоугольного сечения
Если значение L = 0, Длина рассчитывается автоматически
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
Заглушки
№ 12
Площадь заглушки круглого сечения
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце НетФланец
Результаты расчета:
№ 13
Площадь заглушки прямоугольного сечения
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
Вентиляционные утки прямоугольного сечения
№ 14
Площадь утки со смещением в 1-ой плоскости
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
№ 15
Площадь утки со смещением в 2-х плоскостях
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
Вентиляционные зонты
№ 17
Площадь зонта островного типа
Если значения A-a = B-b то изделие будет считаться «Адаптером»
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
№ 18
Площадь зонта пристенного типа
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
Вентиляционные зонты для воздуховода (Грибки)
№ 19
Площадь круглого зонта для воздуховода
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце НетФланец
Результаты расчета:
№ 20
Площадь дефлектора для воздуховода
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце НетФланец
Результаты расчета:
№ 21
Площадь квадратного зонта для воздуховода
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
№ 22
Площадь прямоугольного зонта для воздуховода
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
Вентиляционные сэндвич-изделия
№ 23
Площадь сэндвич-воздуховода круглого сечения
Тип ВН металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Толщина ВН металла 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип НМ металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Толщина НР металла 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип элементов на торце НетФланец
Результаты расчета:
№ 24
Площадь сэндвич-отвода круглого сечения
Тип ВН металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Толщина ВН металла G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип НР металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Толщина НР металла G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Угол α 90°45°60°30°15°мм
Тип элементов на торце НетФланец
Результаты расчета:
№ 25
Площадь сэндвич-тройника круглого сечения
Тип ВН металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Толщина ВН металла G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип НР металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Толщина НР металла G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип элементов на торце НетФланец
Результаты расчета:
№ 26
Площадь сэндвич-перехода круглого сечения
Тип металла ВН оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Толщина ВН G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип НР металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Толщина НР G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип элементов на торце НетФланец
Результаты расчета:
Вентиляционные Дроссель клапаны
№ 27
Площадь дроссель клапана круглого сечения
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце НетФланец
Результаты расчета:
№ 28
Площадь дроссель клапана прямоугольного сечения
Толщина G 0.5 оц. сталь0.7 оц. сталь1.0 оц. сталь1.2 оц. сталь2.0 оц. сталь0.5 нерж. 420 2B0.8 нерж. 420 2B1.0 нерж. 420 2B1.2 нерж. 420 2B1.5 нерж. 420 2B2.0 нерж. 420 2B3.0 нерж. 420 2B0.5 нерж. 304 2B0.8 нерж. 304 2B1.0 нерж. 304 2B1.2 нерж. 304 2B1.5 нерж. 304 2B2.0 нерж. 304 2B3.0 нерж. 304 2B0.5 Лист Х/К0.8 Лист Х/К1.0 Лист Х/К1.2 Лист Х/К1.4 Лист Х/К1.5 Лист Х/К1.8 Лист Х/К2.0 Лист Х/К2.5 Лист Х/К3.0 Лист Х/Кмм
Тип металла оц. сталь 08ПСнерж. 420 2Bнерж. 304 2B пищ.Лист Х/К
Тип элементов на торце ШинаНет
Результаты расчета:
онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.
«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии
курсов.
Russell Bailey, P.E.
Нью-Йорк
«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.
, чтобы познакомить меня с новыми источниками
информации.»
Стивен Дедак, P.E.
Нью-Джерси
«Материал был очень информативным и организованным. Я многому научился, и они были
.очень быстро отвечает на вопросы.
Это было на высшем уровне. Будет использовать
снова . Спасибо. «
Blair Hayward, P.E.
Альберта, Канада
«Простой в использовании веб-сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.
проеду по вашей роте
имя другим на работе «
Roy Pfleiderer, P.E.
Нью-Йорк
«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком
с подробной информацией о Канзасе
Городская авария Хаятт.»
Майкл Морган, P.E.
Техас
«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс
.информативно и полезно
на моей работе »
Вильям Сенкевич, П.Е.
Флорида
«У вас большой выбор курсов, а статьи очень информативны.Вы
— лучшее, что я нашел ».
Russell Smith, P.E.
Пенсильвания
«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр
материал «.
Jesus Sierra, P.E.
Калифорния
«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле
человек узнает больше
от отказов »
John Scondras, P.E.
Пенсильвания
«Курс составлен хорошо, и использование тематических исследований является эффективным.
способ обучения »
Джек Лундберг, P.E.
Висконсин
«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя
студент, оставивший отзыв на курсе
материалов до оплаты и
получает викторину «
Арвин Свангер, P.E.
Вирджиния
«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и
получил много удовольствия «.
Мехди Рахими, П.Е.
Нью-Йорк
«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.
в режиме онлайн
курса.»
Уильям Валериоти, P.E.
Техас
«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о
обсуждаемых тем ».
Майкл Райан, P.E.
Пенсильвания
«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»
Джеральд Нотт, П.Е.
Нью-Джерси
«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было
информативно, выгодно и экономично.
Я очень рекомендую
всем инженерам »
Джеймс Шурелл, П.Е.
Огайо
«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и
не на основании каких-то неясных раздел
законов, которые не применяются
— «нормальная» практика.»
Марк Каноник, П.Е.
Нью-Йорк
«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор
.организация.
Иван Харлан, П.Е.
Теннесси
«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».
Юджин Бойл, П.E.
Калифорния
«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,
и онлайн-формат был очень
доступный и простой
использовать. Большое спасибо ».
Патрисия Адамс, P.E.
Канзас
«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»
Joseph Frissora, P.E.
Нью-Джерси
«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время
.обзор текстового материала. Я
также понравился просмотр
фактических случаев предоставлено.
Жаклин Брукс, П.Е.
Флорида
«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.
испытание потребовало исследований в
документ но ответы были
в наличии. «
Гарольд Катлер, П.Е.
Массачусетс
«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.
в транспортной инженерии, что мне нужно
для выполнения требований
Сертификат ВОМ.»
Джозеф Гилрой, П.Е.
Иллинойс
«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».
Ричард Роудс, P.E.
Мэриленд
«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.
Надеюсь увидеть больше 40%
курса со скидкой.»
Кристина Николас, П.Е.
Нью-Йорк
«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще
курса. Процесс прост, и
намного эффективнее, чем
приходится путешествовать «
Деннис Мейер, P.E.
Айдахо
«Услуги, предоставляемые CEDengineering, очень полезны для Professional
Инженеры получат блоки PDH
в любое время.Очень удобно ».
Пол Абелла, P.E.
Аризона
«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало
время исследовать где на
получить мои кредиты от.
Кристен Фаррелл, P.E.
Висконсин
«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями
и графики; определенно делает это
проще поглотить все
теории.
Виктор Окампо, P.Eng.
Альберта, Канада
«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по
.мой собственный темп во время моего утро
метро
на работу.»
Клиффорд Гринблатт, П.Е.
Мэриленд
«Просто найти интересные курсы, скачать документы и взять
викторина. Я бы очень рекомендовал
вам на любой PE, требующий
CE единиц. «
Марк Хардкасл, П.Е.
Миссури
«Очень хороший выбор тем из многих областей техники.»
Randall Dreiling, P.E.
Миссури
«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь
по ваш промо-адрес электронной почты который
сниженная цена
на 40% «
Конрадо Казем, П.E.
Теннесси
«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».
Charles Fleischer, P.E.
Нью-Йорк
«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику
кодов и Нью-Мексико
правила. «
Брун Гильберт, П.E.
Калифорния
«Мне очень понравились занятия. Они стоили потраченного времени и усилий».
Дэвид Рейнольдс, P.E.
Канзас
«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng
.при необходимости дополнительных
аттестат. «
Томас Каппеллин, П.E.
Иллинойс
«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали
мне то, за что я заплатил — много
оценено! «
Джефф Ханслик, P.E.
Оклахома
«CEDengineering предлагает удобные, экономичные и актуальные курсы.
для инженера »
Майк Зайдл, П.E.
Небраска
«Курс был по разумной цене, а материалы были краткими, а
хорошо организовано.
Glen Schwartz, P.E.
Нью-Джерси
«Вопросы подходили для уроков, а материал урока —
.хороший справочный материал
для деревянного дизайна.
Брайан Адамс, П.E.
Миннесота
«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»
Роберт Велнер, P.E.
Нью-Йорк
«У меня был большой опыт работы в прибрежном строительстве — проектирование
Building курс и
очень рекомендую .»
Денис Солано, P.E.
Флорида
«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими
хорошо подготовлены. «
Юджин Брэкбилл, P.E.
Коннектикут
«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на
.обзор где угодно и
всякий раз, когда.»
Тим Чиддикс, P.E.
Колорадо
«Отлично! Сохраняю широкий выбор тем на выбор».
Уильям Бараттино, P.E.
Вирджиния
«Процесс прямой, без всякой ерунды. Хороший опыт».
Тайрон Бааш, П.E.
Иллинойс
«Вопросы на экзамене были зондирующими и продемонстрировали понимание
материала. Тщательно
и комплексное.
Майкл Тобин, P.E.
Аризона
«Это мой второй курс, и мне понравилось то, что мне предложили курс
поможет по моей линии
работ.»
Рики Хефлин, P.E.
Оклахома
«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».
Анджела Уотсон, P.E.
Монтана
«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».
Кеннет Пейдж, П.E.
Мэриленд
«Это был отличный источник информации о солнечном нагреве воды. Информативный
и отличное освежение ».
Luan Mane, P.E.
Conneticut
«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем
Вернись, чтобы пройти викторину.
Алекс Млсна, П.E.
Индиана
«Я оценил объем информации, предоставленной для класса. Я знаю
это вся информация, которую я могу
использование в реальных жизненных ситуациях .
Натали Дерингер, P.E.
Южная Дакота
«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне
успешно завершено
курс.»
Ира Бродская, П.Е.
Нью-Джерси
«Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а затем вернуться
и пройдите викторину. Очень
удобно а на моем
собственный график «
Майкл Глэдд, P.E.
Грузия
«Спасибо за хорошие курсы на протяжении многих лет.»
Деннис Фундзак, П.Е.
Огайо
«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH
Сертификат . Спасибо за создание
процесс простой ».
Фред Шейбе, P.E.
Висконсин
«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и закончил
один час PDH в
один час. «
Стив Торкильдсон, P.E.
Южная Каролина
«Мне понравилось загружать документы для проверки содержания
и пригодность, до
имея платить за
материал .»
Ричард Вимеленберг, P.E.
Мэриленд
«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».
Дуглас Стаффорд, П.Е.
Техас
«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем
.процесс, которому требуется
улучшение.»
Thomas Stalcup, P.E.
Арканзас
«Мне очень нравится удобство участия в викторине онлайн и получение сразу
сертификат. «
Марлен Делани, П.Е.
Иллинойс
«Учебные модули CEDengineering — это очень удобный способ доступа к информации по
.много разные технические зоны за пределами
по своей специализации без
приходится путешествовать.»
Гектор Герреро, П.Е.
Грузия
% PDF-1.6 % 2787 0 объект > эндобдж xref 2787 94 0000000016 00000 н. 0000003597 00000 н. 0000003821 00000 н. 0000003951 00000 н. 0000004418 00000 н. 0000004533 00000 н. 0000005213 00000 н. 0000005594 00000 н. 0000005707 00000 н. 0000006104 00000 п. 0000006500 00000 н. 0000006959 00000 п. 0000007124 00000 н. 0000007241 00000 н. 0000007359 00000 н. 0000008407 00000 н. 0000008729 00000 н. 0000009076 00000 н. 0000010415 00000 п. 0000010751 00000 п. 0000011136 00000 п. 0000011226 00000 п. 0000012840 00000 п. 0000013193 00000 п. 0000013589 00000 п. 0000015712 00000 п. 0000016073 00000 п. 0000016470 00000 п. 0000016549 00000 п. 0000125516 00000 н. 0000125915 00000 н. 0000125994 00000 н. 0000126073 00000 н. 0000126103 00000 н. 0000126179 00000 н. 0000126278 00000 н. 0000126427 00000 н. 0000126755 00000 н. 0000126812 00000 н. 0000126930 00000 н. 0000127009 00000 н. 0000127123 00000 н. 0000162301 00000 н. 0000162342 00000 н. 0000162431 00000 н. 0000162530 00000 н. 0000162679 00000 н. 0000176075 00000 н. 0000176357 00000 н. 0000176436 00000 н. 0000208657 00000 н. 0000208698 00000 н. 0000208895 00000 н. 0000209123 00000 н. 0000209320 00000 н. 0000209469 00000 н. 0000209618 00000 н. 0000209843 00000 н. 0000210045 00000 н. 0000210169 00000 н. 0000210318 00000 н. 0000210442 00000 н. 0000210591 00000 п. 0000210819 00000 п. 0000210918 00000 н. 0000211067 00000 н. 0000312955 00000 н. 0000313018 00000 н. 0000313093 00000 н. 0000313206 00000 н. 0000313263 00000 н. 0000313354 00000 п. 0000313436 00000 н. 0000313494 00000 п. 0000313598 00000 н. 0000313656 00000 н. 0000313764 00000 н. 0000313822 00000 н. 0000313931 00000 н. 0000313989 00000 н. 0000314132 00000 н. 0000314190 00000 п. 0000314271 00000 н. 0000314352 00000 н. 0000314449 00000 н. 0000314506 00000 н. 0000314651 00000 н. 0000314708 00000 н. 0000314785 00000 н. 0000314842 00000 н. 0000314900 00000 н. 0000314958 00000 н. 0000003369 00000 н. 0000002224 00000 н. трейлер ] / Назад 2106458 / XRefStm 3369 >> startxref 0 %% EOF 2880 0 объект > поток h ޔ T] L [e ~ ӟS: Z ~ FEE͒- [g [OǀMimu ~ 0L @ L @ ُ Pt & xal / HBM / kl1eYiO / 9}} |
Что происходит с потоком воздуха в воздуховодах при изменении размера?
Продолжая изучение качества и фильтрации воздуха в помещении, мы возвращаемся к конструкции воздуховодов.Сегодняшний урок посвящен интересной части физики, которая применима ко всему, что течет. Это может быть тепло, частицы или электромагнитная энергия. В нашем случае это воздух, жидкость, и рассматриваемая нами физика называется уравнением неразрывности. По сути, это закон сохранения, похожий на закон сохранения энергии, и я буду использовать диаграммы, чтобы рассказать историю.
Основная преемственность
Во-первых, у нас есть воздуховод. Воздух поступает в воздуховод слева. Когда воздух движется по воздуховоду, он сталкивается с редуктором, а затем с меньшим воздуховодом.
Что мы знаем о потоке здесь? Размышляя о законах сохранения, мы можем с уверенностью предположить, что каждая частичка воздуха, попадающая в воздуховод слева, должна где-то выходить из воздуховода. Мы возьмем идеально герметичный воздуховод, чтобы воздух не выходил наружу.
Но мы можем усилить наше утверждение, перейдя только от количества воздуха к скорости потока. Используя «эти раздражающие британские единицы измерения», мы можем сказать, что на каждый кубический фут в минуту (куб. Фут / мин) воздуха, поступающего в воздуховод слева, соответствующий кубический фут в минуту выходит из воздуховода справа.Мы представляем поток здесь символом q .
Итак, у нас есть сохранение воздуха — воздух не создается и не разрушается в воздуховоде — и у нас есть сохранение скорости потока. Скорость входящего потока равна скорости выходящего потока. Но чтобы сделать это второе утверждение, нам пришлось сделать предположение.
Мы знаем, что количество молекул воздуха должно быть одинаковым, несмотря ни на что, но сказать, что объем воздуха один и тот же, означает, что плотность не меняется. Когда мы говорим это, мы предполагаем, что воздух несжимаем.Это правда? Можем ли мы с полным основанием сказать, что воздух несжимаемая жидкость?
Общий ответ на вопрос о несжимаемости, как вы знаете, состоит в том, что воздух, безусловно, является сжимаемой жидкостью. Но мы можем рассматривать его как несжимаемый в системах воздуховодов, потому что изменения давления, через которые он проходит, достаточно малы, и плотность воздуха не меняется.
Вот почему наше утверждение выше, что скорость потока (в кубических футах в минуту) воздуха, поступающего в канал, равна скорости потока воздуха, выходящего из канала.У нас преемственность!
Но что происходит со скоростью?
Скорость воздуха в воздуховодах является действительно критическим фактором, определяющим, насколько хорошо воздуховоды выполняют свою работу по эффективному и бесшумному перемещению нужного количества воздуха из одного места в другое. Мы рассмотрим эту тему подробнее в следующей статье, а пока давайте разберемся, что происходит со скоростью, когда воздух переходит из большего канала в меньший.
Во-первых, возвращаясь к нашему утверждению о равных расходах, давайте посмотрим на равные объемы воздуха, проходящего через систему воздуховодов.Допустим, узкая синяя полоска в большем воздуховоде представляет один кубический фут воздуха. Я показал поперечное сечение воздуховода A 1 под этой полосой.
В меньшем воздуховоде тот же кубический фут воздуха распространяется на большую длину, потому что поперечное сечение, A 2 , меньше. Имеет смысл, правда? Вы получаете равные объемы, потому что объем в каждом случае равен площади поперечного сечения, умноженной на длину.
Следующий шаг — понять, что эти разные длины означают для скорости.Согласно нашему уравнению для расходов, q in = q out , в то же время, когда вся узкая воздушная пробка слева сдвинется вперед на одну длину, более широкая пробка воздуха справа будет также продвиньтесь на одну длину вперед.
Как это.
Красная стрелка показывает начальное расстояние между двумя воздушными пробками. Как видите, расстояние между ними увеличилось.
В следующем временном блоке узкая пробка продвигается еще на одну длину.Толстая пробка также продвигается вперед на одну из своих длин.
А потом еще раз.
Каждый раз, когда воздух продвигается на один кубический фут, воздух в меньшем воздуховоде перемещается дальше, чем воздух в большем воздуховоде. Другими словами, скорость в меньшем воздуховоде выше, чем в большем. И это связано с площадью поперечного сечения.
Это уравнение для площади и скорости называется уравнением неразрывности для несжимаемой жидкости.
Стивен Доггетт, доктор философии, LEED AP, провел моделирование вычислительной гидродинамики (CFD), используя геометрию моих диаграмм выше, и получил несколько хороших изображений поля скорости. Вот первый, смоделированный для ламинарного потока:
.Интересно посмотреть, как изменяется скорость в штуцере редуктора. Следует отметить, что это моделирование предполагало ламинарный поток, тогда как в реальных каналах была бы некоторая турбулентность. И поскольку вам сейчас интересно, вот его симуляция того же самого с турбулентностью:
Немного медленнее.Немного больше действий на углах. Немного льстит при сокращении. В целом, они очень похожи, и на них интересно смотреть.
Ключевой вывод здесь заключается в том, что воздух движется из большего канала в меньший, скорость увеличивается. Когда он движется от меньшего к большему воздуховоду, скорость уменьшается. В обоих случаях скорость потока — количество воздуха, проходящего через воздуховод, в кубических футах в минуту — остается неизменной.
Приложения уравнения неразрывности
Поскольку мы только что рассмотрели проблемы с фильтрацией воздуха в моей прошлой статье, вы можете подозревать, что это имеет какое-то отношение.И ты прав. Многие фильтры вызывают проблемы с воздушным потоком из-за чрезмерного падения давления. Чтобы решить эту проблему, вы должны понимать взаимосвязь между площадью фильтра, скоростью забоя и падением давления. Задействовано уравнение неразрывности. Я собираюсь углубиться в это в ближайшее время.
Уравнение неразрывности также имеет решающее значение для поддержания скорости в каналах там, где вы хотите. Если он поднимется слишком высоко, вы получите слишком большой перепад давления и, возможно, шум.
Кроме того, возникает проблема подачи кондиционированного воздуха в помещения с надлежащей скоростью, чтобы обеспечить достаточное перемешивание воздуха в помещении. Это похоже на проблему с фильтром, когда вы должны смотреть на спецификации производителя для регистров подачи, за исключением того, что вы не пытаетесь минимизировать падение давления, как в случае с фильтрами. Вы пытаетесь выбрать правильный регистр для количества воздушного потока, чтобы получить правильную величину выброса и разбрасывания.
Темой моего первого семестра вводного курса физики, которая мне понравилась больше всего, была гидродинамика, изучение движущихся жидкостей.Мы не рассматривали вязкость, но мы узнали об уравнении Бернулли, трубках Вентури и скорости жидкости. В то время я понятия не имел, что буду использовать этот материал в реальном мире почти четыре десятилетия спустя.
Конечно, в 1980 году я даже не мог предсказать, что буду пекарем в Сент-Луисе в 1984 году, мыть окна в Сиэтле в 1986 году или преподавать физику в средней школе Тарпон-Спрингс во Флориде в 1989 году. Нильс Бор, возможно, сказал: «Трудно предсказать, особенно будущее.”
Статьи по теме
Основные принципы проектирования воздуховодов, часть 1
Преобразование нагрузок нагрева и охлаждения в воздушный поток — физика
Наука о провисании — гибкий воздуховод и воздушный поток
Две основные причины снижения потока воздуха в воздуховодах
ПРИМЕЧАНИЕ: Комментарии модерируются. Ваш комментарий не появится ниже, пока не будет одобрен.
Размеры, расчет и проектирование воздуховодов для обеспечения эффективности
как спроектировать систему воздуховодов WSКак спроектировать систему воздуховодов. В этой статье мы узнаем, как рассчитать и спроектировать систему воздуховодов для повышения эффективности. Мы включим полностью проработанный пример, а также моделирование CFD для оптимизации производительности и эффективности с помощью SimScale. Прокрутите вниз, чтобы посмотреть БЕСПЛАТНЫЙ видеоурок на YouTube!
🏆🏆🏆 Создайте бесплатную учетную запись SimScale для тестирования облачной платформы моделирования CFD здесь: https: // www.simscale.com/ Имея более 100 000 пользователей по всему миру, SimScale представляет собой революционную облачную платформу CAE, которая дает мгновенный доступ к технологиям моделирования CFD и FEA для быстрого и легкого виртуального тестирования, сравнения и оптимизации проектов в нескольких отраслях, включая HVAC , AEC и электроника .
Методы проектирования воздуховодов
Существует множество различных методов проектирования систем вентиляции, наиболее распространенными из которых являются:
- Метод уменьшения скорости: (Жилые или небольшие коммерческие установки)
- Метод равного трения: (Средние и большие коммерческие установки)
- Восстановление статического электричества: Очень большие установки (концертные залы, аэропорты и промышленные объекты)
Мы идем Чтобы сосредоточиться на методе равного трения в этом примере, поскольку это наиболее распространенный метод, используемый для коммерческих систем отопления, вентиляции и кондиционирования воздуха, и ему довольно просто следовать.
Пример конструкции
План зданияИтак, мы сразу перейдем к проектированию системы. Мы возьмем небольшое инженерное бюро в качестве примера, и мы хотим сделать чертеж-компоновку здания, который мы будем использовать для проектирования и расчетов. Это действительно простое здание, в нем всего 4 офиса, коридор и механическое помещение, в котором будут располагаться вентилятор, фильтры и воздухонагреватель или охладитель.
Нагрузка на отопление и охлаждение зданияПервое, что нам нужно сделать, это рассчитать нагрузку на отопление и охлаждение для каждой комнаты.Я не буду рассказывать, как это сделать, в этой статье, нам придется рассказать об этом в отдельном руководстве, так как это отдельная предметная область.
После того, как они у вас есть, просто сложите их вместе, чтобы найти самую большую нагрузку, поскольку нам нужно определить размер системы, чтобы она могла работать при пиковом спросе. Охлаждающая нагрузка обычно самая высокая, как в данном случае.
Теперь нам нужно преобразовать охлаждающую нагрузку в объемный расход, но для этого нам сначала нужно преобразовать это в массовый расход, поэтому мы используем формулу:
mdot = Q / (ср x Δt)
Рассчитайте массовый расход воздуха по охлаждающей нагрузкеГде mdot означает массовый расход (кг / с), Q — охлаждающая нагрузка помещения (кВт), cp — удельная теплоемкость воздуха (кДж / кг.K), а Δt — разница температур между расчетной температурой воздуха и расчетной температурой обратки. Просто отметим, что мы будем использовать стандартную скорость 1,026 кДж / кг.k., а дельта T должна быть меньше 10 * C, поэтому мы будем использовать 8 * c.
Нам известны все значения этого параметра, поэтому мы можем рассчитать массовый расход (сколько килограммов в секунду воздуха необходимо для поступления в комнату). Если мы посмотрим на расчет для помещения 1, то увидим, что он требует 0,26 кг / с. Поэтому мы просто повторяем этот расчет для остальной части комнаты, чтобы найти все значения массового расхода.
Расчет массового расхода воздуха для каждой комнатыТеперь мы можем преобразовать их в объемный расход. Для этого нам нужен определенный объем или плотность воздуха. Мы укажем 21 * c и примем атмосферное давление 101,325 кПа. Мы можем найти это в наших таблицах свойств воздуха, но я предпочитаю использовать онлайн-калькулятор http://bit.ly/2tyT8yp, поскольку он работает быстрее. Мы просто добавляем эти числа и получаем плотность воздуха 1,2 кг / м3.
Вы видите, что плотность измеряется в кг / м3, но нам нужен удельный объем, который составляет м3 / кг, поэтому для преобразования мы просто возьмем обратное, что означает вычисление 1.-1), чтобы получить ответ 0,83 м3 / кг.
Теперь, когда у нас есть, мы можем рассчитать объемный расход по формуле:
vdot = mdot, умноженное на v.
Рассчитайте объемный расход воздуха по массовому расходу, где vdot — это объемный расход, mdot — массовый расход в помещении, а v — удельный объем, который мы только что рассчитали.
Итак, если мы опустим эти значения для комнаты 1, мы получим объемный расход 0,2158 м3 / с, то есть сколько воздуха необходимо для входа в комнату, чтобы удовлетворить охлаждающую нагрузку.Так что просто повторите этот расчет для всех комнат.
Теперь мы нарисуем наш маршрут воздуховода на плане этажа, чтобы можно было приступить к его размеру.
Схема воздуховодовПрежде чем мы продолжим, нам нужно рассмотреть некоторые вещи, которые будут играть большую роль в общей эффективности системы.
Соображения по конструкции
Первый — форма воздуховода. Воздуховоды бывают круглой, прямоугольной и плоскоовальной формы.Круглый воздуховод — безусловно, самый энергоэффективный тип, и это то, что мы будем использовать в нашем рабочем примере позже. Если сравнить круглый воздуховод с прямоугольным, мы увидим, что:
Сравнение круглых и прямоугольных воздуховодов Круглый воздуховод с площадью поперечного сечения 0,6 м2 имеет периметр 2,75 м
Прямоугольный воздуховод с равной площадью поперечного сечения имеет периметр 3,87 м
Поэтому прямоугольный воздуховод требует больше металла для своей конструкции, что добавляет больше веса и затраты на дизайн.Более крупный периметр также означает, что больше воздуха будет контактировать с материалом, и это увеличивает трение в системе. Трение в системе означает, что вентилятор должен работать интенсивнее, а это приводит к более высоким эксплуатационным расходам. По возможности всегда используйте круглый воздуховод, хотя во многих случаях необходимо использовать прямоугольный воздуховод, поскольку пространство ограничено.
Второе, что следует учитывать, — это материал, из которого изготовлены воздуховоды, и шероховатость этого материала, поскольку он вызывает трение.Например, если у нас есть два воздуховода с одинаковыми размерами, объемным расходом и скоростью, единственная разница заключается в материале. Один изготовлен из стандартной оцинкованной стали, другой — из стекловолокна, перепад давления на расстоянии 10 м для этого примера составляет около 11 Па для оцинкованной стали и 16 Па для стекловолокна.
Энергоэффективная арматура для воздуховодовТретье, что мы должны учитывать, — это динамические потери, вызванные арматурой. Мы хотим использовать максимально гладкую фурнитуру для повышения энергоэффективности.Например, используйте изгибы с большим радиусом, а не под прямым углом, поскольку резкое изменение направления тратит огромное количество энергии.
Моделирование воздуховодов CFD Мы можем быстро и легко сравнить характеристики воздуховодов различных конструкций с помощью CFD или вычислительной гидродинамики. Эти симуляции были произведены с использованием революционной облачной инженерной платформы CFD и FEA компанией SimScale, которая любезно спонсировала эту статью.
Вы можете бесплатно получить доступ к этому программному обеспечению, щелкнув здесь, и они предлагают несколько различных типов учетных записей в зависимости от ваших потребностей моделирования.
SimScale не ограничивается только проектированием воздуховодов, он также используется для центров обработки данных, приложений AEC, проектирования электроники, а также теплового и структурного анализа.
Просто взгляните на их сайт, и вы найдете тысячи симуляций для всего, от зданий, систем отопления, вентиляции и кондиционирования, теплообменников, насосов и клапанов до гоночных автомобилей и самолетов, которые можно скопировать и использовать в качестве шаблонов для собственного анализа конструкции. .
Они также предлагают бесплатные вебинары, курсы и учебные пособия, которые помогут вам настроить и запустить собственное моделирование.Если, как и я, у вас есть некоторый опыт создания симуляций CFD, то вы знаете, что этот тип программного обеспечения обычно очень дорогое, и вам также понадобится мощный компьютер для его запуска.
Однако с SimScale все можно сделать из веб-браузера. Поскольку платформа основана на облаке, всю работу выполняют их серверы, и мы можем получить доступ к нашим проектным симуляциям из любого места, что значительно облегчает нашу жизнь как инженеров.
Итак, если вы инженер, дизайнер, архитектор или просто кто-то, кто хочет опробовать технологию моделирования, я настоятельно рекомендую вам проверить это программное обеспечение, получить бесплатную учетную запись, перейдя по этой ссылке.
Стандартная и оптимизированная конструкция воздуховодов CFDТеперь, если мы посмотрим на сравнение двух проектов, мы увидим стандартный дизайн слева и более эффективный дизайн справа, который был оптимизирован с помощью simscale. В обеих конструкциях используется скорость воздуха 5 м / с, цвета представляют скорость: синий означает низкую скорость, а красный — области высокой скорости.
Стандартный дизайн воздуховодовИз цветовой шкалы скорости и линий тока видно, что в конструкции слева входящий воздух напрямую ударяет по резким поворотам, присутствующим в системе, что вызывает увеличение статического давления.Резкие повороты вызывают появление большого количества рециркуляционных зон внутри воздуховодов, что препятствует плавному движению воздуха.
Тройник на дальнем конце главного воздуховода заставляет воздух внезапно разделяться и менять направление. Здесь наблюдается большой обратный поток, который снова увеличивает статическое давление и снижает количество подаваемого воздуха
Высокая скорость в главном воздуховоде, вызванная резкими поворотами и резкими поворотами, уменьшает поток в 3 ветви слева.
Оптимизированная конструкция воздуховодов энергоэффективностьЕсли теперь мы сосредоточимся на оптимизированной конструкции справа, мы увидим, что используемые фитинги имеют гораздо более гладкий профиль без внезапных препятствий, рециркуляции или обратного потока, что значительно улучшает скорость воздушного потока в системе. В дальнем конце основного воздуховода воздух делится на две ветви через пологую изогнутую тройниковую секцию. Это позволяет воздуху плавно менять направление и, таким образом, не происходит резкого увеличения статического давления, а скорость потока воздуха в комнаты резко увеличивается.
Три ответвления в главном воздуховоде теперь получают равный воздушный поток, что значительно улучшает конструкцию. Это связано с тем, что дополнительная ветвь теперь питает три меньшие ветви, позволяя некоторой части воздуха плавно отделяться от основного потока и поступать в эти меньшие ветви.
С учетом этих соображений мы можем вернуться к конструкции воздуховода.
Этикетки для воздуховодов и фитинговТеперь нам нужно пометить каждую секцию воздуховода, а также фитинги буквой.Обратите внимание, что мы разрабатываем здесь только очень простую систему, поэтому я включил только воздуховоды и базовую арматуру, я не включил такие вещи, как решетки, воздухозаборники, гибкие соединения, противопожарные клапаны и т. Д.
Теперь мы хотим создать таблицу с помеченными строками, как в примере. Каждому воздуховоду и штуцеру нужен отдельный ряд. Если воздушный поток разделяется, например, в тройнике, тогда нам нужно включить линию для каждого направления, мы увидим это позже в статье.
Просто добавьте буквы в отдельные строки и укажите, какой тип фитинга или воздуховода соответствует.
Схема воздуховодов расход воздухаМы можем начать вводить некоторые данные, мы можем сначала включить объемный расход для каждого из ответвлений, это просто, так как это просто объемный расход для помещения, которое оно обслуживает. Вы можете видеть на диаграмме, которую я заполнил.
Схема воздуховодов Расходы в основных воздуховодахЗатем мы можем приступить к определению размеров основных воздуховодов. Для этого убедитесь, что вы начинаете с самого дальнего главного воздуховода. Затем мы просто складываем объемные расходы для всех ответвлений после этого.Для главного воздуховода G мы просто суммируем ветви L и I. Для D это просто сумма L I и F, а для воздуховода A — это сумма L, I, F и C., поэтому просто введите их в таблицу.
По черновому чертежу мы измеряем длину каждой секции воздуховода и заносим ее в таблицу.
Размеры воздуховодов — Определение размеров воздуховодов
Для определения размеров воздуховодов вам понадобится таблица размеров воздуховодов. Вы можете получить их у производителей воздуховодов или в отраслевых организациях, таких как CIBSE и ASHRAE.Если у вас его нет, вы можете найти их по следующим ссылкам. Ссылка 1 и Ссылка 2
Эти диаграммы содержат много информации. Мы можем использовать их, чтобы найти падение давления на метр, скорость воздуха, объемный расход, а также размер воздуховода. Схема диаграммы может немного отличаться в зависимости от производителя, но в этом примере вертикальные линии показывают падение давления на метр воздуховода. Горизонтальные линии показывают объемный расход. Нисходящие диагональные линии соответствуют скорости, восходящие диагональные линии — диаметру воздуховода.
Мы начинаем подбирать размеры с первого главного воздуховода, который является секцией А. Чтобы ограничить шум в этой секции, мы укажем, что максимальная скорость может составлять не более 5 м / с. Мы знаем, что для этого воздуховода также требуется объемный расход 0,79 м3 / с, поэтому мы можем использовать скорость и объемный расход, чтобы найти недостающие данные.
Пример выбора размера воздуховодаМы берем диаграмму и прокручиваем ее снизу слева, пока не достигнем объемного расхода 0,79 м3 / с. Затем мы определяем точку, где линия скорости составляет 5 м / с, и проводим линию поперек, пока не достигнем ее.Затем, чтобы найти перепад давления, мы проводим вертикальную линию вниз от этого пересечения. В данном случае мы видим, что он составляет 0,65 Па на метр. Так что добавьте эту цифру в диаграмму. Поскольку мы используем метод равного падения давления, мы можем использовать это падение давления для всех длин воздуховодов, поэтому заполните и их. Затем мы снова прокручиваем вверх и выравниваем наше пересечение с направленными вверх диагональными линиями, чтобы увидеть, что для этого требуется воздуховод диаметром 0,45 м, поэтому мы также добавляем его в таблицу.
Нам известны объемный расход и падение давления, поэтому теперь мы можем рассчитать значения для секции C, а затем для остальных воздуховодов.
Для остальных воздуховодов мы используем тот же метод.
Подбор размеров воздуховодов методом равного давленияНа графике мы начинаем с рисования линии от 0,65 Па / м до самого верха, а затем проводим линию напротив нашего требуемого объемного расхода, в данном случае для секции C нам нужно 0,21 м3 / с. На этом пересечении мы проводим линию, чтобы найти скорость, и мы видим, что она попадает в пределы линий 3 и 4 м / с, поэтому нам нужно оценить значение, в этом случае оно составляет около 3,6 м / с, поэтому мы добавляем что к диаграмме.Затем мы рисуем еще одну линию на другой диагональной сетке, чтобы найти диаметр нашего воздуховода, который в данном случае составляет около 0,27 м, и мы тоже добавим его в таблицу.
Повторяйте этот последний процесс для всех оставшихся воздуховодов и ответвлений, пока таблица не будет заполнена.
Теперь найдите общие потери в воздуховоде для каждого воздуховода и ответвления. Это очень легко сделать, просто умножив длину воздуховода на падение давления на метр. В нашем примере мы обнаружили, что оно составляет 0,65 Па / м. Проделайте то же самое со всеми воздуховодами и ответвлениями на столе.
Размер фитингов для воздуховодов
Первый фитинг, который мы рассмотрим, — это изгиб 90 * между воздуховодами J и L
Для этого мы ищем наш коэффициент потерь для изгиба от производителя или отраслевого органа, вы можете узнать это, щелкнув эту ссылку.
Коэффициент потери давления в отводе воздуховодаВ этом примере мы видим, что коэффициент равен 0,11
Затем нам нужно рассчитать динамические потери, вызванные изгибом, изменяющим направление потока.Для этого мы используем формулу Co, умноженную на rho, умноженную на v в квадрате, деленную на 2, где co — наш коэффициент, rho — плотность воздуха, а v — скорость.
Формула потери давления на изгибе воздуховодаМы уже знаем все эти значения, поэтому, если мы опустим цифры, мы получим 0,718 паскалей. Так что просто добавьте это в таблицу. (Посмотрите видео внизу страницы, чтобы узнать, как это вычислить).
Потеря давления в тройнике воздуховодаСледующий фитинг, который мы рассмотрим, — это тройник, который соединяет основной воздуховод с ответвлениями. Мы будем использовать пример тройника с буквой H между G и J в системе.Теперь для этого нам нужно учитывать, что воздух движется в двух направлениях, прямо и также сворачивает в ответвление, поэтому нам нужно выполнить расчет для обоих направлений.
Если мы посмотрим на воздух, движущийся по прямой, то сначала мы найдем отношение скоростей, используя формулу скорости out, деленной на скорость in. В этом примере выход воздуха составляет 3,3 м / с, а входящий воздух — 4 м / с, что дает нам 0,83
Затем мы выполняем другое вычисление, чтобы найти отношение площадей, при этом используется формула: диаметр вне квадрата, деленный на диаметр в квадрате.В этом примере выходной диаметр составляет 0,24 м, а внутренний диаметр — 0,33 м, поэтому, если мы возведем их в квадрат, а затем разделим, мы получим 0,53
.Теперь мы ищем фитинги, которые мы используем, от производителя или отраслевого органа, снова ссылка здесь для этого.
Размер тройника воздуховодаВ руководствах мы находим две таблицы: одна, которую вы используете, зависит от направления потока, мы используем прямое направление, поэтому мы определяем ее местонахождение, а затем просматриваем каждое соотношение, чтобы найти наш коэффициент потерь. Здесь вы можете увидеть, что оба рассчитанных нами значения попадают между значениями, указанными в таблице, поэтому нам необходимо выполнить билинейную интерполяцию.Чтобы сэкономить время, мы просто воспользуемся онлайн-калькулятором, чтобы найти это, ссылка здесь (посмотрите видео, чтобы узнать, как выполнить билинейную интерполяцию).
Заполняем наши значения и находим ответ 0,143
Расчет потери давления в тройникеТеперь мы вычисляем динамические потери для прямого пути через тройник, используя формулу co, умноженную на rho, умноженное на v в квадрате, деленное на 2. Если мы опустим наши значения, мы получим ответ в 0,934 паскаля, поэтому добавьте это в таблицу.
Затем мы можем рассчитать динамические потери для воздуха, который превращается в изгиб.Для этого мы используем те же формулы, что и раньше. Выходная скорость рассчитывается путем вычисления нашего отношения скоростей. Затем мы находим отношение площадей, используя формулу: диаметр вне квадрата, деленный на диаметр в квадрате. Мы берем наши значения из нашей таблицы и используем 3,5 м / с, разделенные на 4 м / с, чтобы получить 0,875 для отношения скоростей, и мы используем 0,26 м в квадрате, деленные на 0,33 м в квадрате, чтобы получить 0,62 для отношения площадей.
Фитинг тройника с потерей изгибаЗатем мы используем таблицу сгибов для тройника, опять же между значениями, указанными в таблице, поэтому мы должны найти числа с помощью билинейной интерполяции.Мы опускаем значения, чтобы получить ответ 0,3645 паскаля. Так что просто добавьте это в таблицу.
Теперь повторите этот расчет для других тройников и фитингов, пока таблица не заполнится.
Определение индексного участка — определение размера воздуховода
Затем нам нужно найти индексный прогон, который представляет собой прогон с наибольшим падением давления. Обычно это самый длинный пробег, но он также может быть пробегом с наибольшим количеством приспособлений.
Мы находим это легко, складывая все потери давления от начала до выхода каждой ветви.
Например, чтобы добраться от A до C, мы теряем 5,04 Па
A (1,3 Па) + B (1,79 Па) + C (1,95 Па)
От A до F мы теряем 8,8 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (2,55 Па) + F (1,95)
От A до I мы теряем 10,56
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H (0,36 Па) + I (1,95 Па)
От A до L мы теряем 12,5 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H (0,93 Па) + J (0,65 Па ) + K (0,72 Па) + L (1,95 Па)
Следовательно, вентилятор, который мы используем, должен преодолевать пробег с наибольшими потерями, а именно A — L с 12.5pa, это индексный прогон.
Заслонки воздуховода — балансировка системы
Чтобы сбалансировать систему, нам нужно добавить демпферы к каждой из ветвей, чтобы гарантировать равный перепад давления во всех и достичь проектных расходов в каждой комнате.
Мы можем рассчитать, какой перепад давления должен обеспечивать каждый демпфер, просто вычитая потери в ходе прогона из индексного прогона.
от A до C составляет 12,5 Па — 5,04 Па = 7,46 Па
от A до F составляет 12,5 Па — 8,8 Па = 3,7 Па
от A до I равно 12.5 Па — 10,56 Па = 1,94 Па
И это наша система воздуховодов. Мы сделаем еще один урок, посвященный дополнительным способам повышения эффективности системы воздуховодов.
Скорость в воздуховоде
Скорость в воздуховоде — британские единицы
Скорость воздуха в вентиляционном канале может быть рассчитана в британских единицах как
v i = q i / A i
= q i / [ π (d f /2) 2 )]= q i / [ π ((d i /12) / 2) 2 )]
= (576/ π) ( q i / d i 2 )
= 14414 q i i i a i b i ) (1)
где
v i = скорость воздуха (фут / мин)
q i = расход воздуха (фут 3 / мин)
A 91 471 i = площадь воздуховода (футы 2 )
d f = диаметр воздуховода (футы)
d i = диаметр воздуховода (дюймы)
a i = ширина воздуховода (дюймы)
b i = ширина воздуховода (дюймы)
Пример — скорость воздушного потока в воздуховоде
Скорость в 12-дюймовом воздуховоде с потоком воздуха 1000 кубических футов в минуту можно рассчитать как
v i = (576/ π ) (1000 кубических футов в минуту) / (12 дюймов) 2 )
= 1273 (футов / мин)
Воздух Калькулятор скорости потока — английские единицы
Скорость воздуха можно рассчитать с помощью калькулятора, приведенного ниже.Добавьте объем воздуха — q — и диаметр — d — (или длину a и b ).
Связанные мобильные приложения из Engineering ToolBox
— бесплатные приложения для автономного использования на мобильных устройствах
Скорость воздуха в воздуховоде — единицы СИ
Скорость воздуха в воздуховоде может быть рассчитана в единицах СИ
v м = q м / A м
= q м / (π (d м /2) 2 )
= 4 q м / (π d м 2 )
= q м / (a м b м ) (2)
где
v м = скорость воздуха (м / с)
q м = расход воздуха (м 3 / с)
A м = площадь воздуховода (м 2 )
d м = диаметр воздуховода ( м)
a м = ширина воздуховода (м)
b м = ширина воздуховода (м)
Пример — скорость воздушного потока в воздуховоде
Скорость в прямоугольном 0.5 м x 0,5 м воздуховод с потоком воздуха 1 м 3 / с можно рассчитать как
v м = (1 м 3 / с) / ((0,5 м) (0,5 м))
= 4 (м / с)
Калькулятор скорости воздушного потока — единицы СИ
Скорость воздуха можно рассчитать с помощью калькулятора, приведенного ниже. Добавьте объем воздуха — q — и диаметр — d — (или длину a и b ).
Воздуховоды — Диаграмма скоростей
Приведенную ниже диаграмму можно использовать для оценки скоростей в воздуховодах.
Значения по умолчанию для воздушного потока 400 кубических футов в минуту (680 м 3 / ч) , размера воздуховода 8 дюймов (200 мм) и скорости 1150 футов в минуту (5,8 м / с) .
Загрузите и распечатайте воздуховоды — диаграмма скоростей!
Потери на трение в воздуховодах
Седло 6 дюймов, 45 градусов на плоской подошве Цена: 19 долларов.99 | 6 «отверстие для бровей с демпфером Цена: $ 26.00 | 6 дюймов, регулируемый под углом 90 градусов Цена: 14,99 долларов США | ||
Штампованный регистр 3-полосный 6 «x6» (103M) Цена: 13 долларов.67 | Штампованный регистр 4-полосный 8 «x8» (104M) Цена: 19,24 доллара | 3 дюйма x 50 ярдов. Лента 3M Venture из фольги 1520CW (без печати) Цена: 21,50 долларов | ||
WETRAG — ТЕПЛОБЛОКИРУЮЩАЯ ЗАЩИТА Цена: 31 доллар.00 | Решетка фильтра возвратного воздуха стержневого типа 14 дюймов x 14 дюймов (290) Цена: 46,51 долл. США | Возврат типа стержня 8 «x8» (270) Цена: 18,51 долл. США | ||
VIPER EVAP + ОЧИСТИТЕЛЬ КАТУШЕК ИСПАРИТЕЛЯ Цена: 31 доллар.00 | DP1020 Герметик для каналов, армированный волокном, 1 галлон Цена: 53,75 долларов США | VIPER BRITE ОЧИСТИТЕЛЬ КАТУШКИ Цена: 34,99 долларов США | ||
VIPER AEROSOL COIL CLEANER Цена: 16 долларов.99 | 6-дюймовая стопорная труба (длина 36 дюймов) Цена: 23,54 доллара | Регулируемое колено 3 дюйма, 90 градусов Цена: 8,17 долларов США | ||
6 дюймов X 25 футов R6.0 Гибкий воздуховод с необработанными концами Цена: 73,28 доллара США | DP1010 Герметик для каналов 1Гал Цена: 39,99 долларов США | Подача стержневого типа, 3 стороны, 8 дюймов x 4 дюйма (230 м) Цена: $ 22.82 | ||
Воздушный поток через одно вентиляционное отверстие практически отсутствует | Pippin
Итак, вы включили систему отопления и охлаждения и заметили нечто странное: одна из ваших комнат не отапливается или не охлаждается должным образом.
К своему разочарованию, вы заметили, что воздух почти не выходит из отверстия для приточного воздуха! Вы проверяете другие комнаты, и в них все нормально. Но в этой комнате вы задаетесь вопросом, как улучшить воздушный поток в системе отопления, вентиляции и кондиционирования воздуха.
Итак, что не так с этой единственной комнатой? После того, как вы убедились, что вентиляционное отверстие находится в рабочем состоянии и открыто, вот несколько проблем с воздуховодом, которые могут вызвать эту неприятную проблему.
4 Распространенные причины одиночного вентиляционного отверстия с небольшим количеством воздуха или его отсутствием
Изогнутый / раздавленный гибкий воздуховод
Гибкий воздуховод, как это звучит, является очень гибким воздуховодом.Однако, поскольку он такой гибкий, он легко сгибается и ломается, что ограничивает приток воздуха в определенную комнату.
Если у вас есть гибкий воздуховод на чердаке, проверьте, не защемляет ли что-нибудь его или нет.
Отсоединенный воздуховод
Воздуховоды из листового металла и гибкие воздуховоды могут отсоединяться в основном соединенном воздуховоде, между секциями труб и на концевом фитинге регистра, предотвращая попадание горячего или холодного воздуха из ваших систем отопления и кондиционирования в воздуховод. комнаты в вашем доме.
Вам понадобится профессионал, чтобы найти отсоединенный воздуховод и закрыть его, чтобы воздух не выходил.
Дырявые / негерметичные воздуховоды
Если через вентиляционное отверстие выходит совсем немного воздуха, то воздуховоды, ведущие в комнату, могут быть негерметичными или иметь дыры.
Это довольно распространенная проблема. Согласно ENERGY STAR, «в типичном доме, однако, от 20 до 30 процентов воздуха, проходящего через систему воздуховодов, теряется из-за утечек, отверстий и плохо соединенных воздуховодов.”
Решение? Герметизация воздуховодов.
Закрытая заслонка
Воздушные заслонки HVAC — это клапаны в ваших воздуховодах, которые регулируют поток воздуха в вашей системе воздуховодов. На открытом воздухе воздух течет свободно; в закрытом (или почти закрытом) состоянии воздушный поток практически отсутствует. Вы когда-нибудь задумывались, должен ли вентиль переменного тока быть открытым или закрытым? Если вы используете свою систему отопления и охлаждения, они всегда должны оставаться открытыми! Даже в комнатах, которыми вы не пользуетесь. Ваша система должна дышать. У вас может быть закрытая заслонка в воздуховоде, которая блокирует попадание воздуха в вентиляционное отверстие в вашей единственной комнате.
Другие возможные проблемы
Иногда что-то еще может создавать засор, закрывая вентиляционные отверстия в стенах (например, животное, которое пробило воздуховод и устроило гнездо или умерло, мягкие игрушки ваших детей, кто-то что-то прячет в полу воздуховод и т. д.). Мебель, закрывающая форточки, также является распространенной проблемой.
Удалите предмет, который мешает работе, или переставьте мебель для оптимального воздушного потока.
Как могут помочь Pippin Brothers
Визуальный осмотр
Если вы живете в районе Лоутон, штат Оклахома, компания Pippin Brothers может быстро найти причину проблемы в вашей системе воздуховодов, выполнив визуальный осмотр.Это самый быстрый и наименее затратный метод исследования вашей системы воздуховодов.
Визуализация с высоким разрешением и тепловое сканирование
Если визуальный осмотр дал ограниченную информацию или не дал никакой информации (что является обычным явлением, если воздуховоды скрыты и недоступны), мы можем вставить камеру для визуализации с высоким разрешением, которую мы используем для наших энергетических аудитов. раздавленные, сломанные, заблокированные, негерметичные или грязные воздуховоды на видеомониторе.
Тепловое сканирование может показать заблокированное тепло / охлаждение, место утечки или сломанный воздуховод.Камера определяет тепловые модели и изменения температуры вашей системы воздуховодов. Эти показания позволяют нашим техническим специалистам выявлять проблемы и потенциально могут предотвратить потенциальный отказ системы и сэкономить ваши деньги на дорогостоящем ремонте и простоях.
Неинвазивный процесс
Редко когда отсутствует / низкий воздушный поток требует инвазивных мер, таких как вырезание отверстий в гипсокартоне и наложение заплат. Но когда нам нужно открыть небольшой участок стены или потолка, чтобы получить доступ к проблеме, у нас есть опытные мастера, которые могут отремонтировать отверстие и сделать его новым, когда мы закончим.
У вас всегда был низкий / низкий воздушный поток?
В этом сообщении в блоге предполагается, что у вас всегда был хороший воздушный поток, и что однажды у вас не было / было низким потоком воздуха из воздуховода.