Максимальная нагрузка на профильную трубу таблица: таблица расчета допустимой прочности на изгиб для прямоугольного и квадратного профиля

Максимальная нагрузка на профильную трубу: способы расчета

Выбирая профильную трубу, необходимо особое внимание уделять её параметрам и учитывать какую нагрузку выдержит профильная труба.

Эти трубы используются, в качестве каркасов для различных сооружений, поэтому подбирать изделия необходимо максимально ответственно.

Преимущества профильных труб заключается в их:

  • легкости;
  • надежности;
  • устойчивости к нагрузкам;
  • простоте монтажа.

Содержание

Нагрузка, действующая на профильную трубу

Здание из профильной трубы

Если планируется изготовить беседку или теплицу, то серьезно задумываться о нагрузках не стоит, так как такие конструкции не подвержены воздействию серьезных сил. А вот если изготавливается навес, козырек, каркас для более серьезного сооружения – то здесь просто необходимы обстоятельные рассчеты.

Профильные трубы устойчивы к деформации, но и у них есть предел. Если нагрузка будет соответствовать норме, то изделие, под действием груза, например, мокрого снега, может согнуться. Если снег удалить, то труба примет свою исходную форму. В том случае, когда допустимая нагрузка превышена, труба не восстановит форму. Это в лучшем случае, в худшем – она просто разорвется.

При выборе профильной трубы, таким образом, необходимо учитывать:
размеры;

  • сечение. Как правило, используются прямоугольные трубы и трубы с квадратным сечением;
  • напряжение каркаса из труб;
  • прочность материала;
  • вероятные нагрузки, которые могут возникнуть в процессе эксплуатации.

Классификация нагрузок

Одним из критериев классификации является время воздействия нагрузок. Виды таких нагрузок установлены СП 20.13330.2011. И они таковы:

  • постоянные. То есть, не меняется ни вес, ни такой показатель, как давление, в течение достаточно долгого времени. Пример постоянной нагрузки: вес и давление элементов здания;
  • временные, но длительные. Например, вес перегородок из ДСП;
  • кратковременные. Это именно о том, о чем шла речь выше: о снеге, ветре и других природных явлениях;
  • особые. Например, нагрузки от взрывов и ударов машин.

Каркас от здания после взрыва ядерной бомбы

Таким образом, если на территории домовладения сооружается навес, то нужно учитывать ряд нагрузок:

  • от снега и ветра;
  • от возможных столкновений с авто.

На территориях, где бывают периодически землетрясения, нельзя не учитывать данный фактор. На таких территориях конструкции должны быть максимально прочными.

Расчетные схемы

Расчетные схемы учитывают не только виды нагрузок, но и то, каким образом нагрузка распределяется по конструкции. Например, опоры могут испытывать более серьезные нагрузки, а поперечные дополнительные элементы – небольшие.

Максимальные нагрузки

Чтобы понять, какие максимальные нагрузки установлены для труб, необходимо изучить следующие таблицы.

Таблица 1. Нагрузка для профильной трубы квадратного сечения

Размеры профиля, ммМаксимальная нагрузка, кг с учетом длины пролета
1 метр2 метра3 метра4 метра5 метров6 метров
Труба 40х40х27091737235165
Труба 40х40х39492319646216
Труба 50х50х21165286120613114
Труба 50х50х31615396167844319
Труба 60х60х21714422180935026
Труба 60х60х323935892501296935
Труба 80х80х34492111047825214482
Труба 100х100х374731851803430253152
Труба 100х100х492172283990529310185
Труба 120х120х41372633391484801478296
Труба 140х140х4190624736
2069
1125679429

Таблица 2. Нагрузка для профильной трубы прямоугольного сечения (рассчитывается по большей стороне)

Размеры профиля, ммМаксимальная нагрузка, кг с учетом длины пролета
1 метр2 метра3 метра4 метра5 метров6 метров
Труба 50х25х26841676934166
Труба 60х40х31255308130663517
Труба 80х40х219114712021055831
Труба 80х40х3
2672
6582811468143
Труба 80х60х3358388438019911262
Труба 100х50х454891357585309176101
Труба 120х80х378541947846455269164

Указаны максимальные нагрузки, в результате которых не произойдет разрыва трубы. Элемент конструкции согнется и, в дальнейшем, не примет изначальной формы. Если же максимальная нагрузка на профильную трубу будет превышена, то тогда уже случится разрыв.

Методы расчета нагрузки

Используются следующие методы:

  • при помощи разработанных таблиц;
  • использование физических формул;
  • расчет при помощи специального калькулятора.

Чтобы рассчитать нагрузку при помощи таблиц, необходимо составить характеристики фактически имеющейся трубы с теми, характеристиками, которые имеются в таблице.

Если расчет нагрузки на профильную трубу ведется при помощи формул, то, в основном, используется такая формула: Ризг= M/W. Изгибающий момент делится на сопротивление.

Существуют и специальные калькуляторы, разработанные специалистами. Однако пользоваться такими калькуляторами можно только в том случае, если они размещены на надежных интернет-сайтах или переданы в пользование компетентными лицами, которые хорошо разбираются в нагрузках на профильные трубы.

Следует подчеркнуть: не стоит делать расчеты самостоятельно. Во-первых, для правильного проведения расчетов, необходимо знать ГОСТы и сопромат. Во-вторых, малейший просчет может привести к серьезным последствиям.

Таким образом, расчет нагрузки на трубы – это очень важная процедура. Пренебрежение ей может повлечь серьезные последствия:

  • разрушение конструкции, здания;
  • наличие пострадавших и жертв.

В новостях, иногда, можно увидеть сюжеты о том, что где-то обрушилась крыша здания или его иные элементы. Такие ситуации, чаще всего, складываются из-за того, что в расчетах были допущены ошибки.

Нагрузка на профильную трубу: таблица расчетов

Профильные стальные изделия востребованы в современном строительстве благодаря продолжительному сроку эксплуатации и простотой монтажа. Перед покупкой труб необходимо произвести расчеты нагрузки и прочности на изгиб, чтобы определиться с видом и количеством материалов.

Особенности профильных изделий

Профильные трубы, которые широко используются в монтаже различных конструкций и прокладке коммуникаций, представляют собой полый продолговатый металлический брусок с сечением квадратной или прямоугольной формы.

проф трубы

Материалом для изготовления профильных изделий является высокоуглеродистая сталь различных марок.

Профилированная стальная труба служит материалом для сооружения каркасов различный конструкций:

  • теплиц;
  • павильонов и остановок;
  • рекламных конструкций;
  • перегородок;
  • лестниц;
  • мебели и т. д.

Также стальная труба может использоваться в качестве перекрытия или балки.

Зачем нужны расчеты

Стальные профили, собранные в конструкцию, испытывают нагрузку других материалов или веществ, а также испытывают напряжение в металле при изгибе. Превышение максимально допустимой нагрузки влечет деформацию трубопрокатных изделий или их разрыв.

Неверно рассчитанная нагрузка повлечет за собой неустойчивость конструкции, невозможность сборки или разрушение в последующем. Это чревато лишними финансовыми затратами на ремонт, приобретение материалов и восстановление конструкции.

согнуло

В процессе эксплуатации труб под нагрузкой происходит ряд изменений в структуре металла, которые необходимо учесть при подборе изделий. При внешнем воздействии на изделие или его изгибе в металле возникает напряжение, т.е происходит неравномерная деформация, при которой отмечается сжатие внутренних связей между молекулами и одновременное растяжение наружного слоя. При этом внутренние части металла увеличиваются в плотности, а наружные уменьшаются за счет уплотнения в месте воздействия.

Какие параметры нужны для расчета нагрузки

При подборе трубных профилей для строительства конструкций необходимо получить информацию о состоянии трубопрокатных профилей для анализа условий и возможностей изделия в процессе эксплуатации.

Данные, которые необходимы для этого:

  • размеры профиля, мм;
  • форма сечения;
  • параметры напряжения конструкции;
  • показатели прочности материала;
  • вид нагрузки на профиль.

размеры труб

Таким образом, принимаются в расчет точки сопротивления для каждого вида материала. При этом учитываются предельно максимальные и минимальные значения:

  • Минимум показателей предполагают нулевую нагрузку.
  • Максимальные – с изгибом изделия до состояния разрыва в металле. Учет данных значений позволит правильно рассчитать устойчивость и подобрать трубы соответствующих параметров, чтобы увеличить срок эксплуатации конструкции.

Как рассчитать нагрузку с помощью таблиц

С учетом различных параметров произведены общепринятые математические расчеты, которые сведены в единые таблицы.

Каждый желающий по стандартам и правилам может произвести расчет допустимой нагрузки по справочным общедоступным таблицам и выбрать вид металлического профиля.

Обратите внимание! Значения в справочных материалах получены учеными и расчетными бюро при использовании теории сопротивлений материалов и законов физики.

Методика расчета нагрузок на металлопрофиль по утвержденным таблицам более точна в связи с учетом в них:

  • вида опор;
  • наличия креплений;
  • типа нагрузок.

В проектах используют данные справочных таблиц из документа СП 20.13330.2011.

В случаях, когда конструкция не имеет нагрузки, берутся значения из таблицы 1 утвержденного стандарта.

таблица1

Например, для перильных или декоративных конструкций. Таблицы 2 и 3 содержат показатели максимальной нагрузки на трубный профиль, когда материал может деформироваться, но без разрыва и при прекращении воздействия металлический элемент примет исходную форму и состояние.

таблица2

При увеличении максимальной нагрузки конструкция может сломаться или разрушиться.

Это важно! Рекомендуется приобретать стальные профили с запасом прочности минимум в 2 раза больше предельно допустимого.

Какую нагрузку способны выдержать профильные трубы

Согласно утвержденным стандартам нагрузка по времени воздействия классифицируется на четыре группы:

  • Постоянная. На профиль оказывается воздействие без изменений показателей. Это могут быть другие материалы, грунт и т. д.;
  • Временно длительная. На профильную конструкцию оказывается нагрузка в течение продолжительного времени. Например, при возведении гипсокартонных перегородок, постройке лестниц в частных домах и т. д.;
  • Кратковременная. Трубопрокат испытывает сезонные или временные нагрузки. Например, тяжесть снега, сильного ветра или напора дождя, вес мебели и посетителей и т. д.;
  • Особенная. Нагрузка на случай стихийных бедствий или чрезвычайных ситуаций. Например, во время землетрясения, столкновения транспорта и т. д.

Обратите внимание! Во время расчета нагрузки на металлический профиль для возведения навеса важно помнить, что изделие является несущей конструкцией.

Для вычисления силы воздействия на каркас из металлопрофиля следует учесть следующие типы нагрузок:

  • вес и вид материала навеса;
  • тип снежного покрова и его высота;
  • сила ветра;
  • возможность повреждения конструкции транспортными средствами.

Другие виды расчетов

Существуют другие методы расчета нагрузки на конструкции:

  • по формуле расчета напряжения изгиба металлической трубы: расчет напряжения при изгибе = изгибающий момент силы / сопротивление

В этой формуле используется закон Гука о пропорциональности силы упругости к показателю деформации.

  • с помощью специальных готовых калькуляторов.

Обратите внимание! Следует помнить, что использование собственных расчетов по разработанным формулам может быть чревато ошибками и погрешностями. Будьте внимательны при учете всех показателей.

Как узнать, правильно ли рассчитана нагрузка

Расчет нагрузок для стальных профилей – это важный процесс, который требует внимательности и использование специальной литературы, ГОСТы, СНиПы и другую общепринятую документацию.

Чтобы проверить правильность собственных расчетов, можно воспользоваться стандартными справочными таблицами, а также проверить полученное значение на специальный сайтах с разработанными расчетными калькуляторами.

Если существует опасение произвести неверные расчеты, возможно обратиться к специалистам с опытом и подтвержденной квалификацией в сфере строительства.

Обратите внимание! Ошибки в расчетах влекут за собой разрушение строений и конструкций, что сопровождается финансовыми расходами, потерей времени и возможностью нанесения вреда здоровью людей.

Нагрузка на профильную трубу: таблица, формулы расчета

На чтение 4 мин.

Допустимая нагрузка на профильную трубу, таблица показателей регламентированы строительными нормами. Эти параметры являются важными характеристиками конструкций, которые применяют при вычислениях.

Профильная трубаПрофильная трубаПрофильная труба под нагрузкой

Нагрузка, действующая на профильную трубу

Предельная прочность профильной трубы характеризуется той нагрузкой, которую сможет выдержать изделие. Нормативные показатели нагрузок имеются в СП 20.13330.2011.

Различают такие нагрузки:

  1. Постоянные, при которых вес и усилие не меняются в течение длительного времени. Их создают конструкции зданий, грунты, а также давление стационарных предметов.
  2. Длительные, происходящие от действия перегородок, оборудования, материалов, вследствие усадки грунта и перепадов влажности.
  3. Кратковременные, происходящие от действия оборудования, силы веса людей, автомашин, климатических воздействий, от снега, льда, изменения температуры, порывов ветра.
  4. Особые — это сейсмические воздействия, результаты взрыва, при которых происходят колебания состава грунтов, а также произошедшие в результате аварий или пожаров.

Например, нужно подсчитать допустимые нагрузки на материал для навеса. В СП имеются формулы для расчета давления, есть таблицы для каждого типа воздействий. Учитывается сочетание всех видов давления.

Классификация нагрузок

При покупке труб нужно учитывать параметры, и какое давление они смогут выдержать. Профильные трубы применяют для каркаса разных сооружений, выбирать эти конструкции нужно точно.

Достоинствами профильных труб считаются:

  • прочность;
  • легкость;
  • стойкость к различным воздействиям;
  • несложная установка.

При строительстве беседки не подсчитывают воздействия, потому что легкие конструкции не подвергаются действию больших усилий. А при создании каркаса крупного сооружения надо провести вычисление воздействий на конструкцию. Балки устойчивы к разным повреждениям, но они имеют предел. Если воздействия будут подсчитаны правильно, то профиль под давлением грунта, слоя снега прогибается. Если снег убрать, балка вернется в исходное состояние. Если превысить допустимую силу, труба может поломаться.

Поэтому при покупке профиля подбирают:

  • размеры;
  • сечение;
  • давление на каркас;
  • характеристики стали;
  • силы, которые могут воздействовать на изделие во время эксплуатации.

Таким образом, можно точно вычислить, какую нагрузку держит профильная труба.

Расчетные схемы

Точный расчет нагрузки на профильную трубу начинают с выбора схемы расчета. Сначала вычисляют силу, действующую на конструкцию. Следующий этап — построение схемы нагрузки на профильную трубу с учетом всех действующих сил, размеров и сечения опор. После этого применяют нормативные параметры, имеющиеся в ГОСТ, делают инженерные расчеты. Для простоты вычислений можно использовать онлайн калькулятор, который содержит программы с формулами.

Максимальные нагрузки

Выбирая профиль, нужно учесть допустимый вес, который может выдержать балка или стойка в данном месте расположения. Показатель представлен в качестве распределенной силы, которая приложена в центре профиля. Под действием нагрузки труба согнется, но когда усилие прекратится, придет в исходное положение.

Если максимальная нагрузка превышена, это приведет к поломке конструкции. В расчетах учитывают совместную силу, которая действует на всю длину опоры. Поэтому балки не должны быть слишком большими. Установка мощной трубы может быть невыгодна с экономической точки зрения и вследствие утяжеления всей конструкции.

В этом случае устанавливают добавочные опоры, что дает возможность повысить допустимое давление. Чтобы определить величину предельной силы, можно применить калькулятор.

Методы расчета нагрузки

Используют такие способы расчета:

  • по калькулятору;
  • по таблицам;
  • с применением формул.

Перед расчетами выполняют чертеж, чтобы выяснить виды воздействий. Если профиль фиксируют одним концом, то выполняют расчет прямоугольной трубы на изгиб. Когда профиль крепят на опорах с 2 сторон, расчет делают на сжатие.

При вычислениях по таблицам показатели максимальной силы уже подсчитаны. Этот способ более простой, тут даются результаты расчетов для разных типов профиля. Имеется предельное значение усилия, которое может выдержать профиль. Из имеющихся методик расчета конструктор может выбрать наиболее приемлемый способ.

Для расчетов созданы специальные таблицы. Показатель момента инерции находят в таблице ГОСТ 8639-82. Параметры профиля прямоугольной формы даются в ГОСТ 8645-68.

Расчет на изгиб выполняют по формуле: σ = M/W, где M — представляет изгибающий момент, W — момент сопротивления трубы. Чем больше W, тем меньше усилие в конструкции. Чтобы найти M, надо знать длину профиля и уровень деформации стали. Это значение дается в ГОСТ. Чтобы вычислить значение W, нужно знать величину балки. Затем показатели ставят в формулу и производят вычисления.

Расчет нагрузки на профильную трубу калькулятор

Используя профильную трубу для создания несущих конструкций, в обязательном порядке должны выполняться расчеты на изгиб. Такой вид трубного проката применяется в промышленном, коммерческом и частном строительстве. Из него изготавливают навесы, всевозможные каркасные и лестничные конструкции, фермы, стеллажи, козырьки, тепличные сооружения, элементы кровельной системы, беседки. Поэтому без правильных и тщательных расчетов никак не обойтись. Превышение допустимого давления приведет к деформации или разрыву изделия в месте сгибания профтрубы.

Схема 1

Используя методы расчета нагрузок на профильную трубу, можно:

  • сохранить первоначальную форму изделий;
  • придать конструкции повышенной прочности;
  • увеличить период эксплуатации;
  • минимизировать расходы на материале;
  • избежать негативных разрушительных последствий.

Какая нагрузка действует на профтрубу?

Важным критерием, который учитывается при подсчетах, является время воздействия и тип нагрузок. Данные показатели регламентированы СП 20.13330.2011 «Нагрузки и воздействия». Различают силу давления:

  • Постоянные, когда масса и воздействующая сила не меняются на протяжении длительного временного периода. Воздействия создаются элементами здания (несущими и ограждающими конструкциями), грунтами, гидростатическим давлением.
  • Длительные. Временные перегородки из ГКЛ, стационарное оборудование, складируемые материалы, а также как результат изменения влажности или усадки.
  • Кратковременные. Оборудование, вес людей и транспортных средств, климатические, создаваемые снегом, ветром, перепадами температур, обледенением.
  • Особые. Сейсмические и взрывные воздействия, влекущие изменения структуры грунта, результат столкновения транспортных средств и обусловленные пожаром.

В Своде правил представлены формулы для подсчета, таблицы и схемы по каждому типу нагрузок. Также берется в учет реалистичное сочетание все типов давления.

Показатели массы и нагрузки на изгиб

При расчете профильной трубы: масса и изгиб являются основными показателями. Знать вес погонного метра проката нужно, чтобы не ошибиться в прочностных значениях создаваемой конструкции. Метод определения направлен на подбор оптимального сечения трубного проката при разной его длине. Наглядный пример соотношений этих двух показателей представлен в таблицах ниже.

Табл.№1. Значения для изделий квадратного сечения:

Табл. №2. Значения для изделий прямоугольного сечения:

Методы и формулы для вычисления

Чтобы рассчитать прочность трубы профильной на изгиб необходимо определить максимальное напряжение на ту либо иную точку конструкции. Каждый вид материала, из которого изготавливается прокатная продукция, обладает индивидуальным показателем напряжения и точкой сопротивления. В учет берутся следующие параметры: вид проката, сечение, толщина стенки, общие характеристики. Владея такими данными, можно предположить, какие будут последствия от воздействия различных факторов, в том числе окружающей среды. При давлении на поперечную часть профтрубы напряжение создается даже в точках, которые удалены от нейтральной оси.

Получить данные можно разными способами:

  • Берутся готовые показатели из строительных справочников и подставляются в формулу. Такие действия предусматривают выбор трубного проката в соответствии с указанными характеристиками, что позволяет делать самые точные подсчеты прогиба. ГОСТ 8639-82 (для изделий квадратного сечения) и ГОСТ 8645-68 (прямоугольного) регламентированы: момент инерции трубы (I), длину пролета (L), нагрузку (Q), модуль упругости в соответствии СНиП. Схемы вычислений индивидуальные и для каждого случая подбирается формула.
  • Самостоятельно рассчитывается прочность на изгиб. В данном случае применим Закон Гука, который выражается формулой: Pизг = M/W, где Pизг — величина прочностного предела, M — изгибающий момент; W — сопротивление. Такие вычисления требуют дополнений: учитываются характеристики исходного материала, давления и т.д.
  • При помощи калькулятора. В специальную расчетную таблицу вносятся исходные данные — длина пролета, нормативная и расчетная нагрузка, Fmax,количество изделий, расчетное сопротивление, параметры. После нажатия на клавишу «Рассчитать» выдается готовый результат.

Не стоит выполнять расчеты самостоятельно. Нужно уметь пользоваться ГОСТами, СНиПами и владеть сложной специфической техникой — сопроматом. При малейших неточностях в подсчетах не избежать серьезных последствий.

Проще применить один из калькуляторов для расчета нагрузки на профильную трубу:

http://www.rsi-llc.ru/calculator/
http://svoydomtoday.ru/building-onlayn-calculators/336-rschet-kvadratnoy-trubi-na-progib-i-izgib.html
https://trubanet.ru/onlajjn-kalkulyatory/raschet-balok-iz-trub-na-izgib.html

Также полезно будет просмотреть видео:

Расчет квадратной трубы на прогиб и изгиб

Замкнутые профили, какими являются квадратные, прямоугольные и круглые трубы, — это вариант для тех, у кого нет возможности использовать деревянные конструкции, но есть желание предать будущему сооружению хорошую эстетичность. Например, каркас козырька, сваренный из квадратных труб, выглядит более эстетично, чем тот же козырек, сваренный из уголков.

Содержание:

1. Калькулятор

2. Инструкция к калькулятору

На данной странице Вам представлен калькулятор способный подбирать сечение квадратной трубы по прочности и деформациям. Другими словами, с помощью данного калькулятора Вы можете произвести расчет квадратной трубы на прогиб и изгиб по ГОСТ 30245-2003 «Профили стальные гнутые замкнутые сварные квадратные для строительных конструкций».

Рассчитать квадратную трубу можно для следующих расчетных схем:

  • Тип 1 — балка с одним пролетом с приложенной на нее равномерно распределенной нагрузкой.
  • Тип 2 — жестко защемленная консоль с равномерно распределенной нагрузкой.
  • Тип 3 — балка лежащая на двух опорах с выведенной консолью с одной стороны.
  • Тип 4 — однопролетная шарнирно опертая балка с приложенной на нее сосредоточенной нагрузкой.
  • Тип 5 — то же самое, что и тип 4, только с двумя сосредоточенными нагрузками.
  • Тип 6 — консоль с жестким защемлением с приложенной на нее сосредоточенной нагрузкой.

Калькулятор

Калькуляторы по теме:

Инструкция к калькулятору

Обращаю ваше внимание, что в нецелых числах необходимо ставить точку, а не запятую, то есть, например, 5.7 м, а не 5,7. Также, если что-то не понятно, задавайте свои вопросы через форму комментариев, расположенную в самом низу.

Исходные данные

Расчетная схема:

Длина пролета (L) — пролет через который переброшена балка или длина консоли.

Расстояния (A и B) — расстояния от опор до мест приложения нагрузок. Для 3 схемы А равна длине консоли балки, опирающейся на 2 опоры.

Нормативная и расчетная нагрузки — нагрузки, на которые рассчитывается квадратная труба. Рассчитать их можно с помощью следующих материалов:

Fmax  — максимально допустимый прогиб, подбираемой по таблице E.1 СНиПа «Нагрузки и воздействия», в зависимости от вида конструкции. Некоторые значения этого показателя приведены в таблице 1.

Таблица 1. Максимальный прогиб для некоторых конструкций согласно СНиП.

Вид балки Длина пролета Требования Fmax
Балки перекрытий, покрытий, крыши L ≤ 1 м Эстетико-психологические, то есть такие, при которых прогиб балки не будет «бросаться в глаза»  1/120 (1/60)
L = 3 м  1/150 (1/75)
L = 6 м  1/200 (1/100)
L = 12 м  1/250 (1/125)
Балки покрытий и перекрытий при наличии на них элементов, подверженных растрескиванию (стяжек, полов, перегородок)  любая  Конструктивные  1/150 (1/75)
Перемычки  любая  Конструктивные  1/200

Примечания:

1. Без скобок Fmax указан для пролета, в скобках — для консоли.

2. В случае промежуточных значений длины пролета L максимальный прогиб Fmax находится по линейной интерполяции.

Количество труб — обычно указывается одна балка, но если есть желание ее усилить и положить рядом еще одну такую же балку, то следует выбрать в графе «две».

Расчетное сопротивление Ry — данный параметр зависит от марки стали. Основ

Расчет прямоугольной трубы на прогиб и изгиб

Прямоугольная труба — это металлопрокат замкнутого профиля. Применяется он обычно в качестве распорок (т.е. работает только на сжатие и растяжение) в каркасных сооружениях или поясов ферм. Но бывают случаи, когда прямоугольную трубу закладывают и в перекрытия жилых зданий или изготавливают из нее, например, козырек над входной дверью. Другими словами, данный профиль используется в тех местах, где он испытывает только изгибающие усилия.

Содержание:

1. Калькулятор

2. Инструкция к калькулятору

Ниже представлен калькулятор, который как раз и может произвести расчет прямоугольной трубы на прогиб и изгиб. Иначе говоря, он может подобрать нужный профиль в зависимости от максимального изгибающего момента, приходящегося на балку, или максимально возможного прогиба, который вы установите самостоятельно или в соответствии со СНиП «Нагрузки и воздействия». Сам подбор можно одновременно осуществить для труб по двум стандартам: ГОСТ 8645-68 и 30245-2003.

Рассчитать прямоугольную трубу можно для шести схем загружения (см. рисунок). Три из них — это балки с равномерно распределенными нагрузками, а остальные — с одной и двумя сосредоточенными силами.

Калькулятор

Какую профильную трубу выбрать? Если пролет 2 метра, 3 метра…

Если пролет 2 метра, 3 метра…

Сварочные работы уже давно стали незаменимыми в наше время. Поставить навес, изготовить стеллажи и еще много разных конструкций мы свариваем по своим наброскам и эскизам. Используем для строительства профильную трубу, уголок, швеллер. Наверно у каждого, кто что-то строил, возникал вопрос – какую трубу или уголок подобрать? Труба меньшего сечения с тонкой стенкой — легче и выглядит изящнее, но выдержит ли она? Крупная труба выдержит, без сомнения, но тяжелая и дорогая. Как выбрать? Изготавливая стеллаж в гараже, нелепо будет обращаться в проектную организацию за расчетами. Долго, дорого и возьмутся ли там за это? Еще и друзья начнут высмеивать.

Хотим поделиться с вами расчетными нагрузками на некоторые профили.
ВНИМАНИЕ!
Предупреждаем – это максимальная нагрузка!
Максимальная нагрузка – это нагрузка, при которой профиль прогнется, но выдержит нагрузку. Если нагрузку убрать – профиль возвратится в исходное состояние.


Если превысить максимальную нагрузку, хоть на 1 килограмм, профиль согнется (сломается) и останется в таком виде навсегда.


Согласитесь, всякое бывает, решили – на полке в гараже будет лежать четыре колеса. Прикинули: одно колесо 20 кг – четыре колеса 80 кг. Подобрали профильную трубу, сварили полку, положили колеса – держит полка. Спустя время на полку положили что-то еще – держит. Прошло время, уже забыли, что на полке груз на максимуме, стали доставать, облокотились, и… согнулась полка. Досадно, обидно.

Чтобы такого не случилось, и сваренный нами стеллаж в гараже служил долго, мы выбираем профиль с запасом прочности в два – три раза больше предполагаемой нами нагрузки. В нашем случае нагрузка – 80 кг, подбираем профиль на нагрузку в 160 – 240 кг.

Труба профильная квадратная


Труба профильная прямоугольная (расчет по большей стороне)


Надеемся, эта информация кому-то будет полезной. Сам я часто табличками пользуюсь.

Максимальная таблица профилей

— TrueType Справочное руководство

Общая информация таблицы

Таблица ‘maxp’ устанавливает требования к памяти для шрифта. Он начинается с номера версии таблицы. Следующая запись — это количество символов в шрифте. Все остальные записи устанавливают максимальные значения для ряда параметров. Большинство из них говорят сами за себя. Тем не менее, некоторые нуждаются в пояснениях.

maxSizeOfInstructions — это максимальный размер в байтах для всех инструкций, связанных с конкретным глифом.

Поле maxComponentElements относится к максимальному количеству простых глифов, которые будут использоваться для создания составного глифа.

maxComponentDepth относится к числу уровней рекурсии, используемых при построении наиболее сложного составного глифа. Максимальное допустимое значение для maxComponentDepth равно 16. Если в компонентах нет компонентов, все составные глифы можно считать простыми, и этому полю можно присвоить значение один.

'maxp' Стол

Тип

название

Описание

Исправлено версия 0x00010000 (1.0)
уинт16 numGlyphs количество глифов в шрифте
уинт16 maxPoints балла в несоставном глифе
уинт16 maxContours контуры в несложном глифе
уинт16 maxComponentPoints баллов в сложном глифе
уинт16 maxComponentContours контуров в составном глифе
уинт16 maxZones установлен на 2
уинт16 maxTwilightPoints очков используется в Сумеречной зоне (Z0)
уинт16 maxStorage Количество мест хранения
уинт16 maxFunctionDefs количество FDEF
уинт16 maxInstructionDefs количество ИДЕФ
уинт16 maxStackElements максимальная глубина стопки
уинт16 maxSizeOfInstructions байта для инструкций глифа
уинт16 maxComponentElements количество глифов на верхнем уровне
уинт16 maxComponentDepth уровней рекурсии, установите в 0, если шрифт имеет только простые глифы
Шрифты

с контурами PostScript (то есть шрифты OpenType с таблицами 'CFF' ) используют шестибайтовую версию таблицы 'maxp' :

'maxp' Таблица для шрифтов PostScript OpenType

Тип

название

Описание

Исправлено версия 0x00005000 (0.5)
уинт16 numGlyphs количество глифов в шрифте

Зависимости

Таблица ‘maxp’ содержит количество глифов в шрифте. Всякий раз, когда это значение изменяется, другие таблицы, которые зависят от него, также должны обновляться. В число затронутых таблиц входят:

Кроме того, некоторые таблицы содержат индексы глифов, которые, возможно, потребуется обновить, если глиф удален из шрифта .Частичный список таких таблиц:

,
maxp - Максимальная таблица характеристик профиля - Типография
  • 2 минуты, чтобы прочитать

В этой статье

В этой таблице приведены требования к памяти для этого шрифта.Шрифты с данными CFF должны использовать версию 0.5 этой таблицы, указав только поле numGlyphs. Шрифты с контурами TrueType должны использовать версию 1.0 этой таблицы, где требуются все данные.

Версия 0.5

Тип Наименование Описание
Фиксированный версия 0x00005000 для версии 0.5
(Обратите внимание на разницу в представлении ненулевой дробной части в Фиксированных числах.)
uint16 numGlyphs Количество глифов в шрифте.

Версия 1.0

Тип Наименование Описание
Фиксированный версия 0x00010000 для версии 1.0.
uint16 numGlyphs Количество глифов в шрифте.
uint16 maxPoints Максимум очков в несоставном глифе.
uint16 maxContours Максимальное количество контуров в несоставном глифе.
uint16 maxCompositePoints Максимум очков в составном глифе.
uint16 maxCompositeContours Максимальные контуры в составном глифе.
uint16 maxZones 1, если в инструкциях не используется сумеречная зона (Z0), или 2, если в инструкциях используется Z0; должен быть установлен на 2 в большинстве случаев.
uint16 maxTwilightPoints Максимум очков, используемых в Z0.
uint16 maxStorage Количество мест хранения.
uint16 maxFunctionDefs Количество FDEF, равное наибольшему номеру функции + 1.
uint16 maxInstructionDefs Количество IDEF.
uint16 maxStackElements Максимальная глубина стека в программе Font (таблица 'fpgm'), программе CVT (таблица 'prep') и во всех инструкциях глифа (в таблице 'glyf').
uint16 maxSizeOfInstructions Максимальное количество байтов для инструкций глифа.
uint16 maxComponentElements Максимальное количество компонентов, указанных на «верхнем уровне» для любого составного глифа.
uint16 maxComponentDepth Максимальные уровни рекурсии; 1 для простых компонентов.
,

подшипников - 1 канал 5/8

Руководство по расчету нагрузки на балку

Нагрузки

в таблицах нагрузки на балку для канала металлического каркаса UNISTRUT® дано как общая равномерная нагрузка (Вт) в фунтах. Для более знакомой униформы нагрузка (w) в фунтах на фут или фунтах на дюйм, разделите нагрузку на стол на пяди.

Грузы под заголовками столбцов «Span / 180», «Span / 240» и «Span / 360 ”предназначены для установок, в которых прогиб (прогиб) нагруженного Канал UNISTRUT® должен быть ограничен.Эти соотношения являются стандартными инженерная практика и, когда это применимо, обычно даются Профессионал Отчета или Спецификации Проекта. Фактическое отклонение от эти предустановленные соотношения равны промежутку (в дюймах или футах), деленному на число 180, 240 или 360. При проектировании до одного из этих пределов отклонения, Допустимая равномерная нагрузка, как правило, меньше значений под колонкой заголовок «Максимально допустимая равномерная нагрузка». Для получения дополнительной информации или Помощь в этом вопросе, свяжитесь с нами.

Все 5 примечаний под таблицами нагрузки на балки должны соблюдаться для получения окончательного полезная нагрузка на канал.Невыполнение этого требования приводит к неправильной работе нагрузить. Эти примечания требуют корректировки максимально допустимой униформы Загрузить для:

  • Пирсированный канал (если применимо)
  • Свободная длина
  • Вес канала
  • Точечные нагрузки в середине пути (если применимо)

Используйте следующие 5 шагов для точного определения допустимой рабочей нагрузки канала UNISTRUT®. o

  • Шаг № 1: Определить максимально допустимую равномерную нагрузку от Таблица нагрузки
  • Шаг № 2: Умножается на применимый коэффициент пробитого отверстия (при использовании таблицы нагрузки луча для сплошного канала)
    • 0.95 за «нокаут»
    • 0,90 для «HS» и «h4»
    • 0,85 для «T», «SL» и «WT»
    • 0,70 для «DS»
  • Шаг № 3: Умножить на коэффициент свободной длины
  • Шаг № 4: Вычесть вес канала
  • Шаг № 5: Умножить на 50% для загрузки среднего уровня ( если Применимо)

Результат после шага № 4 - чистая допустимая общая равномерная нагрузка в фунтах. результат после шага № 5 - допустимая точка промежуточной нагрузки.

,

балок - поддерживается на обоих концах

Напряжение в изгибающем балке можно выразить как

σ = y M / I (1)

, где

σ = напряжение (Па (Н / м ) 2 ), Н / мм 2 , фунт / кв.дюйм)

y = расстояние до точки от нейтральной оси (м, мм, дюйм)

M = изгибающий момент (Нм, фунт-дюйм)

I = момент инерции (м 4 , мм 4 , в 4 )

Приведенный ниже калькулятор можно использовать для расчета максимального напряжения и прогиба балок при одной или одинаковых распределенных нагрузках.

, поддерживаемый на обоих концах - равномерная непрерывная распределенная нагрузка

Beam - stress and deflection with uniform load

Момент в балке с равномерной нагрузкой, поддерживаемой на обоих концах в положении x, может быть выражен как

M x = qx (L - x) / 2 (2)

, где

M x = момент в положении x (Нм, фунт-дюйм)

x = расстояние от конца (м, мм, дюйм)

Максимум момент находится в центре луча на расстоянии L / 2 и может быть выражен как

M max = q L 2 /8 (2a)

где

M макс. = максимальный момент ( Нм, фунт-дюйм)

q = равномерная нагрузка на единицу длины балки (Н / м, Н / мм, фунт / дюйм)

9000 2 L = длина балки (м, мм, дюйм)

Максимальное напряжение

Flanged beam - maximum stress

Уравнения 1 и 2a можно объединить, чтобы выразить максимальное напряжение в балке с равномерным нагрузка поддерживается на обоих концах на расстоянии L / 2, как

макс. = у макс. кв. л 2 / (8 I) (2b)

, где

а макс = максимальное напряжение (Па (Н / м 2 ), Н / мм 2 , фунт / кв.дюйм)

y макс = расстояние до крайней точки от нейтральной оси (м, мм, дюйм)

  • 1 Н / м 2 = 1x10 -6 Н / мм 2 = 1 Па = 1.4504x10 -4 фунтов на квадратный дюйм
  • 1 фунт / кв.дюйм (фунт / дюйм 2 ) = 144 фунта на кв. Дюйм (фунт f / фут 2 ) = 6 894,8 Па (н / м 2 ) = 6,895x10 - 3 Н / мм 2

Максимальное отклонение :

δ макс. = 5 кв. Л макс. = максимальное отклонение (м, мм, дюйм)

E = Модуль упругости (Па (Н / м 2 ), Н / мм 2 , фунт / кв.дюйм)

Отклонение в положении x:

δ x = qx ( L 3 - 2 L x 2 + x 3 ) / (24 EI) (2d)

Примечание! - прогиб часто является ограничивающим фактором в конструкции балки.Для некоторых применений лучи должны быть сильнее, чем требуется максимальными нагрузками, чтобы избежать недопустимых отклонений.

Силы, действующие на концах:

R 1 = R 2

= q L / 2 (2e)

, где

R = реактивная сила (Н, фунт)

Пример - Балка с равномерной нагрузкой, метрические единицы

A Балка UB 305 x 127 x 42 длиной 5000 мм несет равномерную нагрузку 6 Н / мм .Момент инерции для балки составляет 8196 см. 4 (81960000 мм 4 ) , а модуль упругости для стали, используемой в балке, составляет 200 ГПа (200000 Н / мм 2 ) , Высота луча составляет 300 мм (расстояние от крайней точки до нейтральной оси составляет 150 мм ).

Максимальное напряжение в балке можно рассчитать

σ макс = (150 мм) (6 Н / мм) (5000 мм) 2 / (8 (81960000 мм 4 ))

= 34.3 Н / мм 2

= 34,3 10 6 Н / м 2 (Па)

= 34,3 МПа

Максимальный прогиб в пучке можно рассчитать

δ макс. = 5 (6 Н / мм) (5000 мм) 4 / (( 200000 Н / мм 2 ) ( 81960000 мм 4 ) 384)

= 2,98 мм

Калькулятор пучка с равномерной нагрузкой - метрические единицы
  • 1 мм 4 = 10 -4 см 4 = 10 -12 м 4
  • 1 см 4 = 10 -8 м = 10 4 мм
  • 1 в 4 = 4.16x10 5 мм 4 = 41,6 см 4
  • 1 Н / мм 2 = 10 6 Н / м 2 (Па)
Калькулятор с равномерной нагрузкой - имперские единицы
Пример
- Балка с равномерной нагрузкой, имперские единицы

Максимальное напряжение в стальной широкофланцевой балке "W 12 x 35", длина 100 дюймов, длина , момент инерции 285, 4 , модуль упругости 2

00 фунтов на квадратный дюйм , с равномерной нагрузкой 100 фунтов / дюйм можно рассчитать как

σ макс = y макс q L 2 / (8 I)

= (6.25 дюймов) (100 фунтов / дюйм) (100 дюймов) 2 / (8 (285 в 4 ))

= 2741 (фунт / дюйм 2 , фунтов на квадратный дюйм)

Максимальное отклонение может рассчитывается как

δ макс = 5 кв. л 4 / (EI 384)

= 5 (100 фунтов / дюйм) (100 дюймов) 4 / ((2

00 фунтов / в ) 2 ) (285 в 4 ) 384)

= 0,016 в

Поддерживаемый луч на обоих концах - нагрузка в центре

Beam - stress and deflection with single load

Максимальный момент в балке с центральной нагрузкой, поддерживаемой в обоих заканчивается:

M макс. = FL / 4 (3a)

Максимальное напряжение

Максимальное напряжение в балке с одной центральной нагрузкой, поддерживаемой на обоих концах:

σ Макс. = y макс. FL / (4 I) ( 3b)

, где

F = нагрузка (Н, фунт)

Максимальное отклонение можно выразить как

δ Макс. = FL 3 / (48 EI) (3c)

Силы, действующие на концах:

R 1 = R 2

= F / 2 (3d)

Калькулятор одноцентрового луча - метрические единицы
Калькулятор одноцентрового луча - Imperial Units
Пример - Балка с одиночной центральной нагрузкой

Максимальное напряжение в стальной широкофланцевой балке "W 12 x 35", длина 100 дюймов, длина , момент инерции 285, 4 , модуль упругости эластичность 2

00 фунтов на квадратный дюйм , с центральной нагрузкой 10000 фунтов можно рассчитать как

σ макс. = y макс. FL / (4 I)

= (6.25 дюймов) (10000 фунтов) (100 дюймов) / (4 (285 в 4 ))

= 5482 (фунты / в 2 , фунтов на квадратный дюйм)

Максимальный прогиб можно рассчитать как

δ макс. = FL 3 / EI 48

= (10000 фунтов / дюйм) (100 дюймов) 3 / ((2

00 фунтов / дюйм 2 ) (285 в 4 ) 48 )

= 0,025 в

Некоторые типичные вертикальные пределы отклонения

  • общее отклонение: пролет / 250
  • Прогиб нагрузки под нагрузкой: пролет / 360
  • кантилеверов: пролет / 180
  • балки перекрытия из древесины: пролет / 330 (макс. 14 мм)
  • хрупких элементов: пролет / 500
  • крановых балок: пролет / 600

Балка, поддерживаемая с обеих сторон - эксцентрическая нагрузка

Beam - stress and deflection with a single eccentric load

Максимальный момент в балке с одной эксцентричной нагрузкой при точка нагрузки:

M max 9 0050 = F ab / L (4a)

Максимальное напряжение

Максимальное напряжение в балке с одной центральной нагрузкой, поддерживаемой на обоих концах:

σ Макс = y Макс F ab / (LI) (4b)

Максимальный прогиб в точке нагрузки может быть выражен как

δ F = F a 2 b 2 / (3 EIL) (4c)

Силы, действующие на заканчивается:

R 1 = F b / L (4d)

R 2 = F a / L (4e)

Поддерживаемая на обоих концах балка - два эксцентриковых груза

Beam - stress and deflection with two eccentric loads

Максимальный момент (между нагрузками) в балке с двумя эксцентриковыми нагрузками:

M max = F a (5a)

Максимальное напряжение

Максимальное напряжение в балке с двумя эксцентриковыми нагрузками, поддерживаемыми на обоих концах:

σ макс = y макс F a / I (5b)

макс. прогиб в точке нагрузки может быть выражен как

δ F = F a (3L 2 - 4 a 2 ) / (24 EI) (5c)

Силы, действующие на концах:

R 1 = R 2

= F (5d)

Engineering ToolBox Sketchup Extension - Insert W flange beams

Вставьте балки в модель Sketchup с помощью Extension Toolbox Box Sketchup

Балка, поддерживаемая на обоих концах - трехточечные нагрузки

Beam 3 point loads supported both ends moment shear diagram

Максимальный момент (между нагрузками) в балке с тремя точечными нагрузками: 9000 3

M max = FL / 2 (6a)

Максимальное напряжение

Максимальное напряжение в балке с трехточечными нагрузками, поддерживаемыми на обоих концах:

σ max = y max FL / (2 I) (6b)

Максимальный прогиб в центре балки можно выразить как

δ F = FL 3 / (20.22 E I) (6c)

Силы, действующие на концах:

R 1 = R 2

= 1,5 F (6d)

.
Максимальная нагрузка на профильную трубу таблица: таблица расчета допустимой прочности на изгиб для прямоугольного и квадратного профиля

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *