Какие материалы обладающие малой теплопроводностью: Теплопроводность – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

Содержание

Теплопроводность – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Шароглазова Ксения Сергеевна
  • Руководитель: Печерская Светлана Юрьевна

Цель данной работы: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.

Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Задачи:

  • изучить теоретический материал по данному вопросу;
  • исследовать теплопроводность твердых тел;
  • исследовать теплопроводность жидкостей;
  • исследовать теплопроводность газов;
  • сделать выводы о полученных результатах.

Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.

Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.

Элементы УМК к учебнику А.В.Перышкина: учебник «Физика. 8 класс» А.В.Перышкина

Содержание работы

Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Видео: https://cloud.mail.ru/public/JCFY/CFTcCeqhE

Опыт 1

Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня

Внесем в огонь конец деревянной палки. Он воспламенится.

Вывод: дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.

Вывод: стекло имеет плохую теплопроводность.

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь. 

Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.


Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.

Опыт 2. Исследование теплопроводности жидкостей на примере воды

Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.

Вывод: теплопроводность жидкостей меньше теплопроводности металлов.


Опыт 3. Исследование теплопроводности газов

Исследуем теплопроводность газов. 

Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.

Вывод: теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.


Выводы и их обсуждение

Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.

Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:

ТЕПЛОПРОВОДНОСТЬ

ХОРОШАЯ

ПЛОХАЯ

металлы (серебро, медь, железо)

жидкости (вода)

 

газы (воздух)

 

вакуум

 

пористые тела, пробка, бумага, стекло, кирпич, пластмассы

 

волосы, перья птиц, шерсть

 

вата, войлок

Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.

Применение теплопроводности

Теплопроводность на кухне

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.

Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной.

Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.

Отопительная система

Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение.

Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.

Теплопроводность для тепла

Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.

Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.

Теплолечение

Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.

Теплопроводность в бане

Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.

Интересные факты о теплопроводности

Тепло ли колючим зверям в иголках?

Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?

Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин — главная составляющая иголок — проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.

Полипропилен

Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.

Какой материал имеет самую высокую теплопроводность?

Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.

Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.

«Огнеупорный шарик»

Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.


Теплоизоляционные изделия — Огнеупорные материалы

Анализ опыта различных стран в решении проблемы энергосбережения показывает, что одним из наиболее эффективных путей ее решения является сокращение потерь тепла через ограждающие конструкции зданий и сооружений, а также в промышленном оборудовании и тепловых сетях. Добиться этого можно путем применения высокоэффективных теплоизоляционных изделий. Перечень задач, для решения которых используются теплоизоляционные изделия, весьма широк. Это утепление фасадов, кровель, полов, перекрытий и подвалов зданий, различных видов коммуникаций и трубопроводов.

Теплоизоляционными называют строительные изделия, которые обладают малой теплопроводностью и предназначены для тепловой изоляции строительных конструкций жилых, производственных и сельскохозяйственных зданий, поверхностей производственного оборудования и агрегатов (промышленных печей, турбин, трубопроводов, камер холодильников). Теплоизоляционные изделия характеризуются пористым строением и, как следствие этого, малой плотностью (не более 600 кг/м3) и низкой теплопроводностью (не более 0,18 Вт/(м*°С).

Эффективность и сфера использования теплоизоляционных изделий в конкретных строительных конструкциях определяются их техническими характеристиками, включающими следующие основные параметры: теплопроводность, плотность, сжимаемость, водопоглощение, паропроницаемость, огнеупорность, морозостойкость, биостойкость и отсутствие токсичных выделений при эксплуатации.

Основная техническая характеристика теплоизоляционных материалов — это теплопроводность, т.е. способность материала передавать тепло. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м2 при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(м К) или Вт/(м градус Цельсия). При этом величина теплопроводности теплоизоляционных материалов зависит от плотности материала, вида, размера, расположения пор и т.д. Также сильное влияние на теплопроводность оказывает температура и влажность материала. Теплопроводность резко возрастает при увлажнении теплоизоляционных материалов, так как теплопроводность воды равна 0,58 Вт/(м °С), т. е. примерно в 25 раз выше, чем у воздуха. При замерзании увлажненного теплоизоляционного материала происходит дальнейшее увеличение его теплопроводности, поскольку теплопроводность льда составляет 2,32 Вт/(м °С), т. е. в 100 раз больше, чем воздуха в тонких порах. Очевидно, что весьма важно предохранять теплозащиту в конструкциях и на оборудовании от увлажнения, тем более при возможном последующем замерзании влаги. У ряда материалов — особенно волокнистых — теплопроводность с увеличением средней плотности вначале резко уменьшается, а затем возрастает примерно пропорционально увеличению средней плотности материала. Это можно объяснить тем, что при очень малой средней плотности и большом количестве крупных пор теплопроводность с конвекцией растет. С ростом плотности увеличивается доля передачи тепла кондукцией.

Таким образом, можно констатировать, что теплопроводность является важнейшей технической характеристикой теплоизоляционных изделий. От нее зависит напрямую термическое сопротивление ограждения R(терм), кв.мК/Вт

Самым характерным признаком теплоизоляционных материалов является их высокая пористость, поскольку воздух в порах имеет меньшую теплопроводность, чем окружающее его вещество в конденсированном состоянии (твердом или жидком). Пористость теплоизоляционных материалов составляет до 90% и даже до 98%, а супертонкое стекловолокно имеет пористость до 99,5%. Между тем такие конструкционные материалы, как тяжелый цементный бетон, имеет пористость до 9. ..15%, гранит, мрамор —0,2…0,8%, керамический кирпич —25… 35%, сталь —0, древесина —до 70%. Поскольку пористость непосредственно влияет на величину средней плотности, обычно теплоизоляционные материалы различают не по пористости, а по средней плотности.

Огнеупорность  является весьма важным свойством теплоизоляционных изделий, особенно при использовании их для изоляции промышленного оборудования, работающего при высоких температурах. Характеризуют огнеупорность материалов технической и экономической предельными температурами применения. Под технической температурой понимают ту температуру, при которой материал может эксплуатироваться без изменения технических свойств. Экономическая предельная температура применения определяется не только температуростойкостью материала, но и другими его показателями — теплопроводностью, стоимостью, условиями монтажа и т. д. Некоторые материалы с повышенной  теплопроводностью нерационально, например, использовать для высокотемпературной изоляции, несмотря на их высокую техническую предельную температуру применения.

Сжимаемость – способность материала изменять толщину под действием заданного давления. Материалы по сжимаемости мягкие М: деформация свыше 30%, полужесткие ПЖ: деформация 6-30%, жесткие Ж:  деформация не более 6%. Сжимаемость характеризуется относительной деформацией материала при сжатии под действием удельной 0,002 МПа нагрузки. Мягкие изоляционные материалы настолько хорошо пропускают воздух, что движение воздуха приходится предотвращать путем применения отдельной ветрозащиты. Жесткие изделия, в свою очередь, обладают хорошей воздухонепроницаемостью и не нуждаются в каких-либо специальных мерах. Они могут применяться также в качестве ветрозащиты.

Водопоглощение значительно ухудшает теплоизоляционные свойства и понижает прочность и долговечность. Материалы с закрытыми порами, например, пеностекло, имеют низкое водопоглощение (менее 1%). Для уменьшения водопоглощения, например, при изготовлении минераловатных изделий зачастую вводят гидрофобные добавки, которые позволяют уменьшить сорбционную влажность в процессе эксплуатации.

Газо- и паропроницаемость учитывают при применении теплоизоляционного материала в ограждающих конструкциях. Теплоизоляция не должна препятствовать воздухообмену жилых помещений с окружающей средой через наружные стены зданий. В случае повышенной влажности производственных помещений теплоизоляцию защищают от увлажнения с помощью надежной гидроизоляции, укладываемой с «теплой» стороны. Теплоизоляционные материалы с сообщающимися открытыми порами пропускают значительное количество водяного пара, почти столько же, сколько воздуха. Благодаря малому сопротивлению паропроницаемости они почти всегда сухие; конденсация пара наблюдается в основном в следующем слое на более холодной стороне ограждения. Во избежание конденсации водяного пара, теплая сторона должна обладать большей паронепроницаемостью, чем холодная сторона, а также воздухонепроницаемостью.

Пожарная опасность строительных материалов определяется следующими пожарно-техническими характеристиками: горючестью, воспламеняемостью, распространением пламени по поверхности, дымообразующей способностью и токсичностью. Согласно СНиП 21-01-97 «Пожарная безопасность зданий и сооружений» строительные материалы подразделяются на негорючие (НГ) и горючие (Г). Горючие строительные материалы подразделяются на четыре группы: Г1 (слабогорючие), Г2 (умеренногорючие), Г3 (нормальногорючие), Г4 (сильногорючие).

Теплоизоляционные изделия классифицируют по виду основного сырья, форме и внешнему виду, структуре, плотности, жесткости и теплопроводности.

По виду основного сырья теплоизоляционные изделия подразделяются на:

  • органические — получаемые переработкой неделовой древесины и отходов деревообработки (древесноволокнистые плиты и древесностружечные плиты), сельскохозяйственных отходов (соломит, камышит и др.), торфа (торфоплиты) и т. д., а также пластмассы (пенополиэтилен, пенополистирол, пеноглас, пенопласты, поропласты, сотопласты и др.). Характерная особенность большинства органических теплоизоляционных изделий — низкая огнестойкость, поэтому их применяют обычно при температурах не свыше 100 °C, а также при дополнительной конструктивной защите негорючими материалами (штукатурные фасады, трехслойные панели, стены с облицовкой, облицовки с ГКЛ и т. п.)
  • неорганические — изготовляют на основе минерального сырья (горных пород, шлака, стекла, асбеста). К этой группе относят минеральную, стеклянную вату и изделия из них, некоторые виды легких бетонов на пористых заполнителях (вспученном перлите и вермикулите), ячеистые теплоизоляционные бетоны, пеностекло, асбестовые и асбестосодержащие материалы, керамические и др. Эти материалы используют как для утепления строительных конструкций, так и для изоляции горячих поверхностей промышленного оборудования и трубопроводов.
  • смешанные — используемые в качестве монтажных, изготовляют на основе асбеста (асбестовые картон, бумага, войлок), смесей асбеста и минеральных вяжущих веществ (асбестодиатомовые, асбестотрепельные, асбестоизвестковокремнезёмистые, асбестоцементные изделия) и на основе вспученных горных пород (вермикулита, перлита).

По структуре теплоизоляционные материалы классифицируют на волокнистые (минераловатные, стекло — волокнистые), зернистые (перлитовые, вермикулитовые), ячеистые (изделия из ячеистых бетонов, пеностекло).

По плотности теплоизоляционные изделия делят на особо легкие (особо низкой   плотности) плотностью 15…75 кг/м3, легкие (низкой   плотности) — 100…175,   средней   плотности — 200…350   и плотные —400…600 кг/м3.

По жесткости теплоизоляционные изделия подразделяют на мягкие полужесткие, жесткие, повышенной жесткости и твердые. Для индустриализации строительных работ все большее применение находят жесткие крупноразмерные теплоизоляционные изделия. Мерой жесткости является величина их сжимаемости или относительной деформации сжатия. При удельной нагрузке 0,02 МПа жесткие материалы имеют относительное сжатие до 6%, полужесткие — 6…30 и  мягкие — более 30%. В  материалах  повышенной жесткости и твердых при удельной нагрузке соответственно 0,04 и 0,1 МПа относительное сжатие не должно превышать 10%.

По теплопроводности теплоизоляционные материалы разделяются на классы: А — низкой теплопроводности до 0,06 Вт/(м-°С), Б — средней теплопроводности — от 006 до 0,115 Вт/(м-°С), В — повышенной теплопроводности -от 0,115 до 0,175 Вт/(м. °С).

По назначению теплоизоляционные изделия бывают теплоизоляционно- строительные (для утепления строительных конструкций) и теплоизоляционно — монтажные (для тепловой изоляции промышленного оборудования и трубопроводов).

По форме и внешнему виду различают  штучные и сыпучие теплоизоляционные материалы. К штучным материалам относят различного вида и формы изделия. Они могут быть плоскими — кирпичи, маты, блоки, плиты; фасонными — цилиндры, сегменты, скорлупы; и  шнуровыми — шнуры, жгуты.  Применение  штучных материалов повышает качество теплоизоляции и уменьшает трудозатраты. К сыпучим относятся порошкообразные, волокнистые и зернистые рыхлые материалы. Их применяют для засыпки пустот в каркасных стенах, в междуэтажных перекрытиях. Но со временем они слеживаются, уплотняются и их теплоизоляционные  свойства понижаются. Некоторые порошки, затворенные водой, идут для приготовления мастичной изоляции (совелит, магнезит «ньювель», асбозурит), применяемой в основном для заделки швов между теплоизоляционными изделиями.

Органические теплоизоляционные изделия.

Органические теплоизоляционные материалы в зависимости от природы исходного сырья можно условно разделить на два вида: материалы на основе природного органического сырья (древесина, отходы деревообработки, торф, однолетние растения, шерсть животных и т. д.), материалы на основе синтетических смол, так называемые теплоизоляционные пластмассы.

Теплоизоляционные материалы из органического сырья могут быть жесткими и гибкими. К жестким относят древесносткужечные, древесноволокнистые, фибролитовые, арболитовые, камышитовые и торфяные, к гибким — строительный войлок и гофрированный картон. Эти теплоизоляционные материалы отличаются низкой водо — и биостойкостью.

Древесноволокнистые теплоизоляционные плиты получают из отходов древесины, а также из различных сельскохозяйственных отходов (солома, камыш, костра, стебли кукурузы и др.). Древесноволокнистые плиты выпускают длиной 1200-2700, шириной 1200-1700 и толщиной 8-25 мм. По плотности их делят на изоляционные (150-250 кг/м3) и изоляционно-отделочные (250-350 кг/м3). Теплопроводность изоляционных плит 0,047-0,07, а изоляционно-отделочных-0,07-0,08 Вт/(м-°С). Древесностружечные плиты выпускают одно- и многослойными. Например, у трехслойной плиты пористый средний слой состоит из относительно крупных стружек, а поверхностные слои выполняют из одинаковых по толщине плоских тонких стружек. Для теплоизоляционных целей служат легкие плиты плотностью 250…500 кг/м3 и теплопроводностью 0,046… …0,093 Вт/(м°С). Полутяжелые и тяжелые плиты плотностью соответственно 500…800 и 800…1000 кг/м3 и прочностью при изгибе 5…35 МПа применяют как отделочный и конструкционный материал.

Древесноволокнистые плиты обладают высокими звукоизоляционными свойствами. Наряду с изоляционными применяют плиты изоляционно-отделочные, имеющие лицевую поверхность, окрашенную пли подготовленную к окраске.

Камышитовые плиты, или просто камышит, применяют для теплоизоляции ограждающих конструкций зданий HI класса, при постройке малоэтажных жилых домов, небольших производственных помещений, в сельскохозяйственном строительстве. Это теплоизоляционный материал, спрессованный из стеблей камыша в виде плит, которые затем скрепляются стальной оцинкованной проволокой. В зависимости от расположения стеблей камыша различают плиты с поперечным (вдоль короткой стороны плиты) и продольным расположением стеблей. По объемной массе плиты различают трех марок: 175, 200 и 250 с пределом прочности на изгиб — не менее 0,18-0,5 МПа, коэффициентом теплопроводности — 0,06-0,09 МПа, влажностью — не более 18% по массе. Камышитовые плиты производят длиной 2400-2800, шириной 550-1500 и толщиной 30-100мм.

Торфяные теплоизоляционные изделия изготовляют в виде плит, скорлуп и сегментов. Сырьем для их производства служит малоразложившийся верховой торф, имеющий волокнистую структуру, что благоприятствует получению из него качественных изделий путем прессования. Плиты изготовляют размером 1000x500x30 мм путем прессования в металлических формах торфяной массы с добавками (или без них) и с последующей сушкой при температуре 120- 150° С. Торфяные изоляционные плиты по объемной массе делят на М 70 и 220 кг/м3 с пределом прочности па изгиб — 0,3 МПа, коэффициентом теплопроводности в сухом состоянии 0,06 Вт/м-°С, влажностью не более 15%.

Торфяные теплоизоляционные изделия применяют для теплоизоляции ограждающих конструкций зданий 3‑го класса и поверхностей промышленного оборудования с рабочей температурой от -60 до +100 °С.

Цемёнтно-фибролитовые плиты представляют собой теплоизоляционный и теплоизоляционно-конструктивный материал, полученный из затвердевшей смеси портландцемента, воды и древесной шерсти. Древесная шерсть выполняет в фибролите роль армирующего каркаса. По внешнему виду тонкие древесные стружки длиной до 500, шириной 4-7, толщиной 0,25-0,5 мм приготовляют из неделовой древесины хвойных пород на специальных древесношерстяпых станках. По объемной массе цементно-фибролитовые плиты делят на М 300, 350, 400 и 500 с пределом прочности при изгибе соответственно не менее 0,4 0,5, 0,7 и 1,2 МПа, коэффициентом теплопроводности-0,09-0,15Вт/м-°С, водопоглощением — не более 20%. Длина плит 2000-2400, ширина 500-550, толщина 50, 75, 100 мм.

Фибролитовые плиты на портландцементе применяют в качестве теплоизоляционного, теплоизоляционно-конструктивного и акустического материала для стен, перегородок, перекрытий и покрытий зданий.

Пробковые теплоизоляционные материалы и изделия (плиты, скорлупы и сегменты) применяют для теплоизоляции ограждающих конструкций зданий, холодильников и поверхностей холодильного оборудования трубопроводов при температуре изолируемых поверхностей от минус 150 до плюс 70 °С, для изоляции корпуса кораблей. Изготовляют их путем прессования измельченной пробковой крошки, которую получают как отход при производстве закупорочных пробок из коры пробкового дуба или так называемого бархатного дерева, растущего в Дальневосточном крае, в Амурской области и на Сахалине. Пробка вследствие высокой пористости и наличия смолистых веществ является одним из наилучших теплоизоляционных материалов. Пробковые теплоизоляционные материалы и изделия по объемной массе в сухом состоянии делят на М 150-350 с пределом прочности при изгибе соответственно 0,15-0,25 МПа, коэффициентом теплопроводности в сухом состоянии при температуре 25° С-0,05-0,09 Вт/м-°С.

К положительным свойствам плит следует отнести также то, что они не горят, с трудом тлеют, не подвержены заражению домовым грибком и не разрушаются грызунами. Пробковые материалы упаковывают в клетки объемом 0,25- 0,5 м3 и хранят в сухом закрытом помещении, а перевозят в крытых вагонах.

Теплоизоляционные изделия на основе полимеров в виде газонаполненных пластмасс и изделий, а также минераловатных и стекловатных изделий производят на полимерном связующем.

Поризация полимеров основана на применении специальных веществ, интенсивно выделяющих газы и вспучивающих размягченный при нагревании полимер. Такие вспучивающиеся вещества могут быть твердыми, жидкими и газообразными.

Плиты, скорлупы и сегменты из пористых пластмасс применяют для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования и трубопроводов при температуре до 70° С. Изделия из пористых пластмасс на суспензионном полистироле по объемной массе в сухом состоянии делят на М 25 и 35 с пределом прочности на изгиб не менее 0,1-0,2 МПа, коэффициентом теплопроводности — 0,04 Вт/м °С, влажностью — не более 2% по массе. Такие же изделия па эмульсионном полистироле по объемной массе имеют М 50-200 предел прочности на изгиб соответственно — не менее 1,0-7,5 МПа, коэффициент теплопроводности -не более 0,04-0,05, влажность не более 1% по массе. Плиты из пористых пластмасс изготовляют длиной 500-1000, шириной 400-700, толщиной 25-80 мм.

В зависимости от структуры теплоизоляционные пластмассы могут быть разделены на две группы: пенопласты и поропласты.

Пенопластами называют ячеистые пластмассы с малой плотностью и наличием несообщающихся между собой полостей или ячеек, заполненных газами или воздухом.

Поропласты — пористые пластмассы, структура которых характеризуется сообщающимися между собой полостями. Наибольший интерес для современного индустриального строительства представляют пенополистпрол, пенополивинилхлорид, пенополиуретан и мипора.

Изоляционные и изоляционно — отделочные плиты применяют для тепло- и звукоизоляции стен, потолков, полов, перегородок и перекрытий зданий, акустической изоляции концертных залов и театров (подвесные потолки и облицовка стен).

Неорганические теплоизоляционные изделия.

К неорганическим теплоизоляционным изделиям относят штучные, рулонные, шнуровые, рыхлые материалы и изделия с волокнистой и ячеистой структурой, предназначенные для утепления, главным образом, ограждающих конструкций и сооружений: минеральная вата, стеклянное волокно, пеностекло, вспученный перлит и вермикулит, асбестосодержащие теплоизоляционные изделия, ячеистые бетоны и др.

Минеральная вата волокнистый теплоизоляционный материал, получаемый из силикатных расплавов. Сырьем для ее производства служат горные породы (известняки, мергели, диориты и др.), отходы металлургической промышленности (доменные и топливные шлаки) и промышленности строительных материалов (бой глиняного и силикатного кирпича). В зависимости от плотности минеральная вата подразделяется на марки 75, 100, 125 и 150. Минеральная вата хрупка, и при ее укладке образуется много пыли, поэтому вату гранулируют т.е. о превращают в рыхлые комочки — гранулы. Их используют в качестве теплоизоляционной засыпки пустотелых стен и перекрытий. Сама минеральная вата является как бы полуфабрикатом, из которого выполняют разнообразные теплоизоляционные минераловатные изделия: войлок, маты, полужесткие и жесткие плиты, скорлупы, сегменты и др.

Отличительными чертами изделий из минеральной ваты являются высокая тепло- и звукоизолирующая способность, устойчивость к температурным деформациям, химическая и биологическая стойкость, экологичность и легкость выполнения монтажа. Но наиболее ценным свойством минеральной ваты, отличающим ее от других теплоизоляционных материалов, является негорючесть.

По требованиям пожарной безопасности изделия из минеральной ваты относятся к классу негорючих материалов (НГ). Более того, они эффективно препятствуют распространению пламени и применяются в качестве противопожарной изоляции и огнезащиты. Также изделия из минеральной ваты могут быть использованы в условиях очень высоких температур. Минеральные волокна способны выдерживать температуру выше 1000°С. Даже после разрушения связующего компонента при температуре 250°С, волокна остаются неповрежденными и связанными между собой, сохраняя прочность и создавая защиту от огня.

Применяют минеральную вату для теплоизоляции как холодных (до -200 °С), так и для горячих (до +600 °С) поверхностей, чаще всего в виде изделий — войлока, матов, попужестких и жестких плит, скорлуп, сегментов. Минеральную вату используют также в качестве теплоизоляционной засыпки пустотелых стен и покрытий, для этого ее гранулируют (превращают в рыхлые комочки).

На основе минерального сырья производят минераловатные маты, полужесткие и жесткие плиты, а также скорлупы, сегменты, цилиндры и другие изделия. Маты прошивные минераловатные изготовляют длиной 2000, шириной 900-1300 и толщиной 60 мм. По объемной массе в сухом состоянии выпускают маты М 150, коэффициентом теплопроводности в сухом состоянии -не более 0,046 Вт/м-°С. Теплоизоляционные маты на основе минерального волокна предназначены для тепловой изоляции строительных конструкций, промышленного оборудования и трубопроводов тепловых сетей. Отечественная промышленность производит несколько видов минераловатных матов. Маты минераловатные прошивные применяют для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования и трубопроводов при температуре до 400° С.

Стеклянная вата — материал, состоящий из беспорядочно расположенных стеклянных волокон, полученных из расплавленного сырья. Сырьем для производства стекловаты служит сырьевая шахта для варки стекла (кварцевый песок, кальцинированная сода и сульфат натрия) или стекольный бой.

В зависимости от назначения вырабатывают текстильное и теплоизоляционное (штапельное) стекловолокно. Средний диаметр текстильного волокна 3-7 мкм, а теплоизоляционного 10-30 мкм.

Стеклянное волокно значительно большей длины, чем волокна минеральной ваты и отличается большими химической стойкостью и прочностью. Плотность стеклянной ваты 75-125 кг/м3, теплопроводность 0,04-0,052 Вт/(м/°С), предельная температура применения стеклянной ваты 450 °С.

В настоящее время наша промышленность производит шесть видов изделий из стеклянного волокна. Это в основном плиты и маты.

Теплоизоляционные изделия из стекловолокна применяются в системах наружного утепления «мокрого» типа, в навесных вентилируемых фасадах, в системах с утеплителем с внутренней стороны ограждающей конструкции, в системах с утеплителем внутри ограждающей конструкции. Для изделий из стекловаты предельная температура применения — около 450°С.

Пеностекло — теплоизоляционный материал ячеистой структуры. Сырьем для производства изделий из пеностекла (плит, блоков) служит смесь тонкоизмельченного стеклянного боя с газообразоватслем (молотым известняком).

Пеностекло обладает рядом ценных свойств, выгодно отличающих его от многих других теплоизоляционных материалов: пористость пеностекла 80-95 %, размер пор 0,1-3 мм, плотность 200-600 кг/м3, теплопроводность 0,09-0,14 Вт/(м, /(м* °С), предел прочности при сжатии пеностекла 2-6 МПа. Кроме того, пеностекло характеризуется водостойкостью, морозостойкостью, несгораемостью, хорошим звукопоглощением, его легко обрабатывать режущим инструментом. Пеностекло в виде плит длиной 500, шириной 400 и толщиной 70-140 мм используют в строительстве для утепления стен, перекрытий, кровель и других частей зданий, а в виде полуцилиндров, скорлуп и сегментов — для изоляции тепловых агрегатов и теплосетей, где температура не превышает 300 °С. Кроме того, пеностекло служит звукопоглощающим и одновременно отделочным материалом для аудиторий, кинотеатров и концертных залов.

К материалам и изделиям из асбестового волокна без добавок или с добавкой связующих веществ относят асбестовые бумагу, шнур, ткань, плиты и др. Асбест может быть также частью композиций, из которых изготовляют разнообразные теплоизоляционные материалы (совелит и др). В рассматриваемых материалах и изделиях использованы ценные свойства асбеста: температуростойкость, высокая прочность, волокнистость и др.

Гладкую асбестовую бумагу применяют в качестве теплоизоляционных прокладок при изоляции трубопроводов. Гофрированную бумагу используют для производства ячеистого асбестового картона,  асбестовый картон — для теплоизоляции трубопроводов с температурой эксплуатации до 500 °С, а также для покрытия деревянных и других легковоспламеняющихся предметов и изделий с целью повышения огнестойкости. В виде плит асбестовый картон применяется для теплоизоляции плоских поверхностей, в виде полуцилиндрических покрышек — для изоляции трубопроводов, асбестовый шнур — для теплоизоляции промышленного оборудования и теплопроводов. При отсутствии в составе шнура органического волокна его можно применять при температуре до 500 °С, при наличии волокна — не более 200 °С,  Асбесто-магнезиальный порошок применяют для тепловой изоляции промышленного оборудования при температуре до 350 °С. Порошок используют не только в виде засыпной теплоизоляции, но и для приготовления мастик, плит, сегментов.

Алюминиевая фольга (альфоль) — новый теплоизоляционный материал, представляющий собой ленту гофрированной бумаги с наклеенной на гребне гофров алюминиевой фольгой. Данный вид теплоизоляционного материала в отличие от любого пористого материала сочетает низкую теплопроводность воздуха, заключенного между листами алюминиевой фольги, с высокой отража- тельной способностью самой поверхности алюминиевой фольги. Алюминиевую фольгу для целей теплоизоляции выпускают в рулонах шириной до 100, толщиной 0,005- 0,03 мм.

Практика использования алюминиевой фольги в теплоизоляции показала, что оптимальная толщина воздушной прослойки между слоями фольги должна быть 8-10 мм, а количество слоев должно быть не менее трех. Плотность такой слоевой конструкции из алюминиевой (фольги 6-9 кг/м3, теплопроводность — 0,03 — 0,08 Вт/(м* С ).

Алюминиевую фольгу употребляют в качестве отражательной изоляции в теплоизоляционных слоистых конструкциях зданий и сооружений, а также для теплоизоляции поверхностей промышленного оборудования и трубопроводов при температуре 300 °С.

Большое распространение в отечественном строительстве также получили теплоизоляционные бетоны — газонаполненные (пенобетон, ячеистый бетон, газобетон) и на основе легких заполнителей (керамзитобетон, перлитобетон, полистиролбетон и т. п.). Этому способствует простота технологии, позволяющая производить пенобетон прямо на стройплощадке, а также доступность сырьевых материалов и относительно невысокая стоимость. Однако, несмотря на то, что пенобетоны вследствие высокой огнестойкости могут быть использованы для огнезащитных барьеров и подобных конструкций, их теплоизоляционные свойства, по сравнению с перечисленными выше материалами, значительно ниже.

Применение теплоизоляционных материалов в строительстве позволяет повысить степень индустриализации работ, поскольку они обеспечивают возможность изготовления крупноразмерных сборных конструкций и деталей, снизить массу конструкций, уменьшить потребность в других строительных материалах (бетон, кирпич, древесина и др.), сократить расход топлива на отопление зданий, уменьшить потери тепла в промышленных агрегатах. Теплоизоляционные материалы обеспечивают надлежащий комфорт в жилых помещениях, улучшают условия труда на производстве, снижают случаи травматизма.

Хороший эффект дает использование теплоизоляционных материалов для изоляции тепловых агрегатов, технологической аппаратуры и трубопроводов, что позволяет снизить расход топлива за счет уменьшения теплопотерь.

Очень важным считается использование теплоизоляционных материалов в различных холодильных установках для снижения потерь холода (стоимость получения единицы холода примерно в 20 раз выше получения единицы тепла).

Многие теплоизоляционные изделия вследствие высокой пористости обладают способностью поглощать звуки, что позволяет употреблять их также в качестве акустических материалов для борьбы с шумом.

Приобрести теплоизоляционные строительные изделия Вы можете на нашем сайте.

В компании представлен широкий ассортимент теплоизоляционных изделий различных марок по выгодным ценам.

Новый материал побил рекорд низкой теплопроводности – Physics World

Стратегия новых материалов обеспечивает самую низкую теплопроводность среди неорганических материалов. Предоставлено: Университет Ливерпуля

Новый неорганический материал с самой низкой теплопроводностью, о которой когда-либо сообщалось, может стать благом для технологий, которые преобразуют отработанное тепло в энергию. Материал, который проводит тепло почти так же плохо, как воздух, был разработан и синтезирован таким образом, что он сочетает в себе два различных расположения атомов, каждое из которых замедляет скорость прохождения тепла через него.

Из всей энергии, вырабатываемой в мире, ошеломляющие 70% в настоящее время идут на сбросное тепло. Помимо вреда для окружающей среды, отработанное тепло также вызывает перегрев электронных устройств, что снижает их эффективность и срок службы. Однако часть этого тепла можно использовать, используя материалы с низкой теплопроводностью κ для преобразования его в электричество.

Уменьшение переноса тепла через фононы

Теплопроводность твердого тела определяется поведением его фононов, которые представляют собой колебания его кристаллической решетки. Есть два основных способа уменьшить перенос тепла через фононы: уменьшить длину, на которую рассеиваются фононы, или уменьшить скорость, с которой они путешествуют как группа.

Длина рассеяния фононов зависит от рассеяния между самими фононами и рассеяния фононов на дефектах или границах внутри материала. Групповая скорость фононов, с другой стороны, зависит от структуры и состава материала. Исследователи ранее пытались уменьшить длину рассеяния фононов за счет инженерных дефектов в материалах и производства материалов с наноструктурами, специально разработанными с низким значением κ . Другие методы включают изменение слоев между кристаллами для изменения фононных взаимодействий на границе раздела слоев.

Синергетические комбинации

В последней работе Мэтт Россейнски, Джон Алариа и их коллеги из Ливерпульского университета, Великобритания, создали композитный материал, содержащий слои, которые избирательно нацеливаются на фононы, путешествующие вдоль и поперек объема материала. Путем сопряжения слоев BiOCl и Bi 2 O 2 Se с Bi 4 O 4 SeCl 2 удалось подавить (соответственно) вклады продольных и поперечных фононов в общую теплопроводность материала. . Полученный композит имеет теплопроводность всего 0,1 Вт на метр Кельвина (Вт/м·К) при комнатной температуре в направлении его укладки — один из самых низких показателей среди всех сыпучих неорганических материалов и всего в четыре раза больше, чем теплопроводность воздуха.

«Отправной точкой нового исследования было понимание того, как структура материала позволит нам контролировать перенос тепла через него», — объясняют Россеинский и Аларай. Во время их продолжающегося пятилетнего исследования так называемых множественных анионных материалов им сначала нужно было разработать новую химию, которая позволила бы им синтезировать свой материал путем синергетического объединения двух разных и необычных расположений атомов. Им также необходимо было определить механизмы, ответственные за снижение теплопередачи в каждом устройстве, путем измерения и моделирования теплопроводности различных задействованных структур.

«Трудно объединить механизмы в одном материале, потому что вы должны точно контролировать, как в нем расположены атомы», — объясняют они. «Интуитивно вы ожидаете получить среднее значение физических свойств двух компонентов. Выбрав благоприятные химические границы между каждым из этих различных атомных расположений, мы экспериментально синтезировали материал, который сочетает в себе их оба».

Улучшенные материалы с низким значением κ

Важно отметить, что новый материал имеет гораздо более низкую теплопроводность при комнатной температуре, чем любой из материалов, содержащих только одну такую ​​структуру. Этот неожиданный результат показывает, что расположение различных атомов в структуре важно, и помогает объяснить, почему свойства целого лучше, чем свойства его составных частей.

Подробнее

Теория переноса тепла становится всеобщей

Россеинский, Алария и их коллеги теперь надеются оптимизировать электронные свойства своего материала для создания термоэлектрического элемента. Они также планируют перенести новый принцип конструкции на другие классы неорганических материалов, которые можно использовать в теплозащитных покрытиях для газовых турбин. Эти покрытия должны иметь теплопроводность ниже, чем у кварцевого стекла, которое имеет κ из 0,9 Вт/м·К.

По словам исследователей, их стратегия комбинирования различных атомных схем для максимизации их эффективности в уменьшении теплового потока еще не достигла конечной точки. «Эти материалы можно было бы улучшить еще больше, оптимизировав расположение каждой из структур по отдельности перед их объединением», — говорят они Physics World .

Подробная информация об исследовании содержится в Science .

10 лучших исследовательских работ по низкой теплопроводности

10 лучших исследовательских работ по низкой теплопроводности — Thermtest
  • Последние
  • В тренде
  • Наш выбор
  1. Пенопласт с закрытыми порами широко используется в качестве защитной одежды в экстремальных условиях. В этой статье изучалось использование материалов на основе неопрена в гидрокостюмах путем разработки стратегии снижения теплопроводности гибкой полихлоропеновой пены с закрытыми порами. Теплопроводность заряженного и немодифицированного вспененного неопрена измеряли методом переходного плоского источника (TPS) с помощью измерителя теплопроводности Hot Disc TPS 2500 S. Было обнаружено, что гидрокостюм, изготовленный из неопрена со сверхнизкой теплопроводностью, потенциально может увеличить время погружения до 2–3 часов в воде при температуре ниже 10 ° C по сравнению с <1 часом для современных гидрокостюмов.

  2. В этом исследовании анализируется муллитовая керамика, образованная в результате вспенивания и отверждения крахмалом порошка муллита, а также то, как изменяется ее теплопроводность в зависимости от пористости керамики. Теплопроводность измерялась с помощью метода плоскостного источника (TPS) Hot Disc с помощью TPS 2500 S. По мере увеличения пористости муллитовой керамики увеличивается и теплопроводность.

  3. Исследуется сеть трехмерных углеродных нанотрубок (УНТ) и то, как легирование калием или йодом может повлиять на термоэлектрические свойства этой сети. Благодаря наномасштабированию на месте эта сеть УНТ была объединена с полианилином (ПАНИ) и увеличила термоэлектрические характеристики ПАНИ, сохранив при этом гибкую структуру трехмерной сети УНТ. Этот композит имеет одну из самых низких теплопроводностей среди всех известных материалов на основе УНТ.

  4. В данной статье исследуется влияние легирования алюминием на теплопроводность и другие термоэлектрические свойства наноструктурированного Zn1•XAlXTe (0 ≤ X ≤ 0,15) в диапазоне температур 300 K – 600 K. Теплопроводность измерялась с помощью нестационарного плоского источника (TPS) с помощью анализатора тепловых констант Hot Disc. Было обнаружено, что с увеличением легирования алюминия теплопроводность уменьшалась, а с повышением температуры также уменьшалась теплопроводность. Снижение теплопроводности повысило эффективность термоэлектрического материала, выраженную безразмерной добротностью (zT).

  5. В настоящее время исследователи разрабатывают способы производства термоэлектрических материалов, таких как скуттерудиты, с низкой теплопроводностью решетки. В данной работе была разработана процедура гидротермального синтеза для получения соединений CoSb3. Анализатор термических постоянных Hot Disc измерил теплопроводность трех образцов CoSb3 с использованием метода переходного плоского источника (TPS). Результаты показали, что теплопроводность увеличивалась с понижением температуры и была намного ниже для образцов CoSb3, синтезированных гидротермальным способом, чем другие методы изготовления.

  6. Аэрогели монолитного диоксида кремния были синтезированы с очень низкой теплопроводностью (0,036 Вт/мК) и высокой пористостью (97%) путем сушки под давлением при комнатной температуре. Этот метод сушки заменяет сверхкритическую сушку, которая является более дорогостоящей и опасной. Аэрогель был получен из тетраэтоксисилана (ТЭОС) и обработки триметилхлорсиланом. ЯМР и ИК-Фурье-спектроскопию использовали для характеристики поверхностного сцепления и краевых углов. Использование метода множественной модификации поверхности (МСМ) позволило авторам создать аэрогель с высокой монолитностью и пористостью, а также низкой теплопроводностью.

  7. Используя порошок муллита промышленного качества и процесс вспенивания и консолидации крахмала, была приготовлена ​​серия пористой муллитовой керамики. Эта керамика была проанализирована с помощью анализатора тепловых констант Hot Disc, и было определено, что керамика имеет низкую теплопроводность и может быть хорошим теплоизолятором. Пористость синтезированной керамики можно контролировать с помощью температуры спекания и регулирования загрузки твердой фазы. Керамика была подвергнута теоретическим моделям (Эйкена-Максвелла и EMT), чтобы доказать, что приготовленная керамика была классифицирована как «внутренняя пористость».

  8. Термобарьерные покрытия (TBC) наносятся плазменным напылением на детали газовых турбин для повышения эффективности сгорания и увеличения срока службы компонентов. В этом отчете рассматриваются два TBC: частично стабилизированный оксидом иттрия диоксид циркония (YPSZ) и частично стабилизированный диспрозией диоксид циркония (DyPSZ). Для измерения теплопроводности покрытий использовались методы TPS и лазерной вспышки, и результаты сравнивались. Кроме того, было исследовано влияние микроструктуры барьера на теплопроводность.

  9. Серия компактированных Bi 0,5 Sb 1,5 Te 3 синтезирована гидротермальными методами с последующим холодным прессованием и спеканием при температуре от 300°С до 380°С. Затем на синтезированных нанопластинках проводят различные термические, механические и электрические анализы, включая: метод TPS для теплопроводности, SEM/TEM/AFM для выяснения механических и физических свойств нанопластинок, а также оксфордский криостат с охладителем замкнутого цикла для измерения электрическое сопротивление. Образец нанопластинок, спеченный при 340°С, показал наилучшее сочетание тепловых, электрических и механических свойств.

  10. Керосин используется в качестве охлаждающей жидкости в двигателях, однако, как и многие обычные теплоносители, он имеет низкую теплопроводность. Наножидкости представляют собой суспензии теплопроводных частиц нанометрового размера в базовой жидкости. В этой статье исследуются тепловые свойства наножидкости на основе керосина с наночастицами оксида меди (CuO). Измеритель теплопроводности (TPS-500) измерял теплопроводность наножидкостей оксида меди/керосина с использованием метода переходного плоского источника (TPS). Образцы наножидкостей объемом 60 мл в диапазоне концентраций от 0,01 до 0,08% измеряли в течение 20 секунд при 25 мВт.

    Какие материалы обладающие малой теплопроводностью: Теплопроводность – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *