Как сделать своими руками стабилизатор напряжения 220в: Стабилизатор напряжения 220В своими руками: схема, принцип действия

Стоит ли собирать стабилизатор напряжения своими руками

Идеальным вариантом работы электросетей является изменение значений тока и напряжения как в сторону уменьшения, так и увеличения не более чем на 10% от номинальных 220 В. Но поскольку в реальности скачки характеризуются большими изменениями, то электроприборам, подключенным к сети напрямую, грозит потеря проектных возможностей и даже выход из строя.

Избежать неприятностей поможет использование специального оборудования. Но поскольку оно отличается весьма высокой ценой, то многие предпочитают собирать стабилизатор напряжения сделанный своими руками. Насколько оправдан такой шаг и что потребуется для его реализации?

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Виды приборов и их особенности

Виды и их применения

Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно одним из способов:

  • Механическим;
  • Импульсным.

Первый основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям.

Приборы этого типа позволяют очень только выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.

Импульсные модели работают по принципу амплитудной модуляции тока. В цепи стабилизатора используется выключатель, разрывающий ее через определенные промежутки времени. Такой подход позволяет равномерно накапливать ток в конденсаторе, а после его полной зарядки и далее на приборы.

В отличие от линейных стабилизаторов импульсные не имеют возможности задавать определенную величину. В продаже встречаются модели повышающе-понижающие – это идеальный выбор для дома.

Также стабилизаторы напряжения делятся на:

  1. Однофазные;
  2. Трехфазные.

Но так как большинство бытовых приборов работают от однофазной сети, то в жилых помещениях используют как правило оборудование, относящееся к первому типу.

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Этапы изготовления

Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

схема электрическая принципиальная

Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:

  • магнитопровод площадью сечения 1,87 см²;
  • три кабеля ПЭВ-2.

Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.

Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.

Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.

соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.

Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.

Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.

Эффективность изделия, выполненного своими руками

Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.

К преимуществам самодельных устройств можно отнести и возможность самостоятельного ремонта. Человек, собравший стабилизатор разобрался как в его принципе действия, так и строении и поэтому сможет устранить неисправность без посторонней помощи.

Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.

Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.

Заключение

Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

Схема простого сетевого стабилизатора напряжения

Как сделать 220–вольтный стабилизатор напряжения своими руками и бережно
сохранить синусоидальную форму сетевого напряжения

Основное назначение стабилизатора напряжения сети – защита электрического оборудования от возможного повреждения в результате колебаний уровня сетевого напряжения, выходящего за пределы допусков для данного типа устройств.

Причём, если для некоторых гаджетов, питающихся от встроенных импульсных преобразователей, форма сетевого напряжения не имеет существенного значения, то для таких устройств как: холодильник, стиральная машина, кондиционер и прочих, имеющих на борту классический сетевой трансформатор, компрессор или двигатель переменного тока, синусоидальная форма сетевого напряжения является жизненно необходимой.

А потому на повестке нашего сегодняшнего заседания – схема простого стабилизатора напряжения сети, выдающего на выходе стабильное переменное напряжение чистой синусоидальной формы.
Данное устройство было опубликовано в журнале Радиоконструктор, 2006 г, №6 под авторством Н. Кривошеина. Вот что пишет автор:

Стабилизатор представляет собой сетевой авто­трансформатор, отводы обмотки которого переключаются автоматически в зависимости от величины напряжения в электросети.

Стабилизатор позволяет поддерживать выходное напряжение на уровне 220V при изменении входного от 180 до 270 V. Точность стабилизации 10V.
Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схему автотрансформатора).
Схема управления показана на рисунке 1.

В качестве измерителя напряжения выступает компараторная ИМС с линейной индикацией напряжения – А1 (LM3914).
Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У данного трансформатора есть две вторичные обмотки по 12V, или одна обмотка на 24V с отводом от середины.

Выпрямитель на диоде VD1 служит для получения напряжения питания. Напряжение с конденсатора С1 поступает на цепь питания ИМС А1 и светодиодов оптопар Н1.1…Н9.1. А так же он служит для получения образцовых стабильных напряжений минимальной и максимальной отметки шкалы. Для их получения используется стабилизатор на VD3 и R1.
Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 – верхнее значение, резистором RЗ – нижнее).


Измеряемое напряжение берётся с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напряжения от номинального значения.

В процессе налаживания резистор R5 предварительно устанавливают в среднее положение, а резистор RЗ в нижнее по схеме. Затем на первичную обмотку Т1 от автотрансформатора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключённый к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные светодиоды). Затем входное переменное напряжение уменьшают до 190V и резистором RЗ выводят шкалу на значение, при котором горит светодиод, подключённый к выводу 18 А1.
Если вышеуказанные настройки сделать не удаётся, то нужно подстроить немного R5 и повторить их снова. Так, путём последовательных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микросхемы А1.

Всего должно получиться девять пороговых значений: 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных измерений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9. Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на 10V) отвод трансформатора. И наоборот, увеличение показаний микросхемы А1 приводит к переключению на понижающий отвод автотрансформатора.

Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симисторные ключи переключаются уверенно.

Схема на транзисторах VТ1 и VT2 (рисунок 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переходных процессов в схеме после включения. Эта схема задерживает подключение светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 – любой малогабаритный сетевой трансформатор на первичное напряжение 220V, два вторичных по 12V (12-0-12V) и ток 300mА.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Симисторы можно использовать другие – всё зависит от мощности нагрузки.

Сделав другие настройки резисторами R2, RЗ, R5 (рисунок 1) и, соответственно, другие отводы Т2 (рисунок 2), можно изменить шаг переключения напряжения.

 

Сборка 2-ступенчатой ​​схемы стабилизатора сетевого питания — Весь дом

В этой статье мы узнаем, как сделать 2-релейную или двухступенчатую схему стабилизатора напряжения для управления и регулирования сетевого напряжения 220 В или 120 В с помощью простой схемы.

Введение

В этой схеме стабилизатора мощности одно реле подключено для выбора высокого или низкого отвода от трансформатора стабилизатора при определенном уровне напряжения; в то время как второе реле поддерживает нормальное сетевое напряжение включенным, но в момент колебания напряжения оно переключается и выбирает соответствующий ГОРЯЧИЙ отвод через контакты первого реле.

Обсуждаемая здесь простая схема стабилизатора питания очень проста в сборке, но при этом способна обеспечить двухступенчатую коррекцию входной сети.

Простой метод преобразования обычного трансформатора в стабилизирующий трансформатор также обсуждался с использованием принципиальных схем.

Работа схемы

Как показано на следующем рисунке, всю работу схемы можно понять по следующим пунктам:

Основная идея состоит в том, чтобы заставить реле №1 переключаться при двух различных крайних значениях сетевого напряжения (высоком и низком), которые считаются не подходящими для приборов.

Это переключение позволяет этому реле выбирать подходящее кондиционированное напряжение от другого реле через его размыкающие контакты.

Как подключить контакты реле

Контакты этого второго реле № 2 обеспечивают выбор соответствующего напряжения от стабилизирующего трансформатора и держат его готовым для реле № 1 всякий раз, когда оно переключается при опасных уровнях напряжения. При нормальном напряжении реле №1 остается включенным и выбирает нормальное напряжение через свои нормально разомкнутые контакты.

Транзисторы Т1 и Т2 используются как датчики напряжения. Реле №1 подключено к этой конфигурации на коллекторе T2.

Пока напряжение в норме, T1 остается выключенным. Следовательно, Т2 в этот момент остается включенным. Реле №1 активировано, и его нормально разомкнутые контакты подключают НОРМАЛЬНЫЙ переменный ток к устройству.

Если напряжение имеет тенденцию к росту, Т1 медленно проводит, и при определенном уровне (определяется настройкой Р1) Т1 полностью проводит и отключает Т2 и реле №1.

Реле немедленно подключает скорректированное (пониженное) напряжение, подаваемое реле №2, через свои размыкающие контакты к выходу.

Теперь, в случае низкого напряжения T1 и T2 оба перестанут проводить, что даст тот же результат, что и выше, но на этот раз подаваемое напряжение от реле № 2 к реле № 1 будет высоким, так что выход получает требуемое скорректированный уровень напряжения.

Реле №2 получает питание от T3 при определенном уровне напряжения (в соответствии с настройкой P3) между двумя крайними значениями напряжения. Его контакты подключены к отводу трансформатора стабилизатора, так что он соответствующим образом выбирает нужное напряжение.

Как собрать схему

Конструкция этой схемы очень проста. Это можно сделать, выполнив следующие действия:

Отрежьте небольшой кусок платы общего назначения (примерно 10 на 5 мм).

Начните сборку, сначала вставив транзисторы, оставив достаточно места между ними, чтобы остальные можно было разместить вокруг каждого из них. Припаяйте и отрежьте их выводы.

Затем вставьте остальные компоненты и соедините их друг с другом и с транзисторами пайкой. Воспользуйтесь электрической схемой для их правильной ориентации и размещения.

Наконец, закрепите реле, чтобы завершить сборку платы.

Следующая страница посвящена конструкции трансформатора стабилизатора мощности и процедуре испытаний. После завершения этих процедур вы можете интегрировать проверенную сборку схемы в соответствующие трансформаторы.

Вся установка может быть помещена в прочный металлический корпус и установлена ​​для выполнения необходимых операций.
Список деталей

R1, R2, R3 = 1K, 1/4W,

P1, P2,P3 = 10K, ЛИНЕЙНЫЕ ПРЕДУСТАНОВКИ,

C1 = 1000 мкФ/25 В

Z1, Z2, Z3 = 3 В, 400 мВт стабилитрон,

T1, T2, T3 = BC 547B,

RL1, RL2= РЕЛЕ 12 В, SPDT, 400 Ом,

D1- -D4 = 1N4007,

TR1 = 0–12 В, 500 мА,

TR2 = 25–0–25 В, 5 А. С РАЗЪЕМНЫМ ЦЕНТРАЛЬНЫМ ОТВОДОМ, ОБЩЕЙ ПЛАТОЙ, МЕТАЛЛИЧЕСКИМ КОРПУСОМ, СЕТЕВЫМ ШНУРОМ, РОЗЕТКОЙ, ДЕРЖАТЕЛЕМ ПРЕДОХРАНИТЕЛЯ И Т. Д.

Как превратить обычный трансформатор в трансформатор-стабилизатор

Трансформаторы-стабилизаторы обычно изготавливаются на заказ и недоступны на рынке в готовом виде. Поскольку от них требуется несколько отводов сетевого напряжения переменного тока (высокого и низкого), а также поскольку они специфичны для конкретного приложения, становится очень сложно приобрести их в готовом виде.

Для данной схемы также требуется трансформатор регулятора мощности, но для простоты конструкции можно использовать простой метод преобразования обычного трансформатора источника питания в трансформатор стабилизатора напряжения.

Как показано на рисунке, здесь нам нужен обычный трансформатор на 25-0-25/5 А. Центральный отвод должен быть разделен, чтобы вторичная обмотка могла состоять из двух отдельных обмоток. Теперь осталось просто подключить первичные провода к двум вторичным обмоткам, как показано на схеме.

Таким образом, следуя описанной выше процедуре, вы сможете успешно преобразовать обычный трансформатор в стабилизирующий трансформатор, очень удобный для данного приложения.

Как настроить устройство

Для процедуры настройки вам потребуется переменный источник питания 0–24 В/500 мА. Это может быть завершено следующими шагами:

Поскольку мы знаем, что колебания напряжения сети переменного тока всегда будут создавать пропорциональную величину колебаний напряжения постоянного тока от трансформатора, мы можем предположить, что для входных напряжений 210, 230 и 250, соответственно полученные эквивалентные напряжения постоянного тока должны быть 11,5, 12,5 и 13,5 соответственно.

Теперь настройка соответствующих предустановок становится очень простой в соответствии с указанными выше уровнями напряжения.

  • Сначала оставьте оба трансформатора TR1 и TR2 отключенными от цепи.
  • Держите ползунок P1, P2 и P3 примерно посередине.
  • Подключите внешний регулируемый источник питания к цепи. Отрегулируйте напряжение примерно до 12,5.
  • Теперь медленно начните регулировать P3, пока не активируется RL2.
  • Уменьшите напряжение питания примерно до 11,5 вольт (RL2 при этом должен отключиться), отрегулируйте P1 так, чтобы RL1 просто отключился.
  • Постепенно увеличьте подачу примерно до 13,5 – это должно привести к включению RL1 и RL2 один за другим, указывая на правильность вышеуказанных настроек.
  • Теперь медленно отрегулируйте P2 так, чтобы RL1 снова деактивировался при этом напряжении (13.5).
  • Подтвердите указанные выше настройки, изменяя входное напряжение от 11,5 до 13,5 В и обратно. Вы должны получить следующие результаты:
  • RL1 должен деактивироваться при уровнях напряжения 11,5 и 13,5, но должен оставаться активным между этими напряжениями. RL2 должен включаться выше 12,5 и выключаться ниже 12 вольт.

На этом процедура настройки завершена.

Окончательная конструкция этого блока регулятора мощности может быть завершена путем соединения тестируемой цепи с соответствующими трансформаторами и сокрытия всей секции внутри хорошо вентилируемого металлического корпуса, как это было предложено на предыдущей странице.

Схема стабилизатора напряжения с ШИМ-управлением

0003

Последнее обновление by Swagatam 32 комментария

В этом посте объясняется, как сделать мощную схему стабилизатора сетевого напряжения с Н-образным мостом от 100 В до 220 В с использованием автоматического ШИМ-управления. Идея была запрошена г-ном Саджадом.

Цели и требования схемы

  1. Я очень удивлен вашими работами и намерениями помочь людям. Теперь позвольте мне перейти к сути, мне нужен регулятор напряжения с такими возможностями, насколько это возможно 1-сосредоточьтесь на проблемах низкого напряжения, а не чем высокое напряжение, предпочтительно около 100 В и до 250 В
  2. Мне нужна высокая способность стабилизации и поддержания 3,5-тонного кондиционера около 30 ампер и другая конструкция, способная поддерживать 5А для освещения.
  3. По возможности избегайте больших трансформаторов, мне нравятся ферритовые трансформаторы
  4. Я нашел эту идею стабилизатора ( https://drive.google.com/file/d/0B5Ct1V0x1 jac19IdzltM3g4N2s/view?usp=sharing ) вот ссылка Мне нужна схема с той же идеей низкое входное напряжение около 100-135В высокого тока для запуска и поддержания 3,5-тонного кондиционера и второй дизайн для освещения 6А, если у вас есть время
  5. Я хочу третью конструкцию с сумасшедшим стабилизатором на 100 А для всего дома. Я уже запрашивал дизайн, но понятия не имел, что эта конструкция выглядит довольно хорошо для меня с элегантной эффективностью. для отображения параметров и пользовательского имени, отключения высокого напряжения, защиты от перегрева, но удалите его, если это усложняет конструкцию.

    Я знаю, что то, о чем я просил, слишком много для выполнения в одном контуре, поэтому отбросьте невозможное, чтобы подвести итог. Мне нужны три конструкции, одна для сильноточного кондиционера, два одинаковых регулятора, но с упомянутыми второстепенными функциями, и три один для осветления

    вы можете задаться вопросом, почему требуется такое низкое входное напряжение 100 В, большую часть времени летом у нас нет общественного электричества, но у нас дома есть местный генератор с электричеством 120-170 В, а наш потолочный вентилятор едва вращается

    Общественное электричество — это электричество из сети который имеет высокий ток, но низкое напряжение со временем питания в лучшем случае восемь часов в день летом, с другой стороны, как я сказал, у нас есть большие местные генераторы, в это время мы платим на основе ампер (номинальный ток автоматического выключателя для местного электричества) например, скажите, что вы хотите 50 А, они будут снабжать вас электричеством с автоматическим выключателем на 50 А, и вы должны платить за 50 А независимо от вашего использования (они будут считать, что вы используете все 50 А),

    , так что в моем доме я плачу за электроэнергию из сети и электроэнергию от местного генератора, местный генератор не является моим домашним генератором, вы можете представить его как электроэнергию из второй сети, но принадлежащую частному сектору, в обоих случаях у нас есть проблемы с напряжением, но не с током,

    Наконец, я теперь понимаю, что оптимизатор напряжения в форсированном режиме будет потреблять больше тока для создания требуемого напряжения на

    Принцип сохранения энергии (V1xI1=V2xI2), предполагающий эффективность 100%, текущее решение, которое я использую сейчас, это повышение трансформатор, который уменьшит потребляемый ток, может быть до 30 А или 50 А, но с хорошим напряжением, но это небезопасно из-за отсутствия регулирования, на общественное электричество у нас, по-видимому, нет ограничений, мы платим на основе кВтч,

    Перед трансформатором я купил регулятор напряжения, но он не работал, так как не соблюдается минимум 180В.

    Конструкция

    Полную конструкцию предлагаемой схемы стабилизатора сетевого напряжения Н-моста для управления напряжением от 100 до 220 В можно увидеть на следующем рисунке: обсуждались посты о схеме солнечного инвертора для 1,5-тонного кондиционера.

    Однако для реализации намеченной автоматической стабилизации 100 В в 220 В мы используем здесь несколько вещей: 1) катушку повышения автотрансформатора 0-400 В и самооптимизирующуюся схему ШИМ.

    Вышеприведенная схема использует топологию полного моста инвертора с использованием IC IRS2453 и 4 N-канальных МОП-транзисторов.

    Микросхема оснащена собственным встроенным генератором, частота которого соответствующим образом устанавливается путем расчета указанных значений Rt, Ct. Эта частота становится рекомендуемой рабочей частотой инвертора, которая может составлять 50 Гц (для входа 220 В) или 60 Гц (для входа 120 В) в зависимости от технических характеристик электросети страны.

    Напряжение на шине получается путем выпрямления входного сетевого напряжения и подается через сеть MOSFET H-моста.

    Первичная нагрузка, подключенная между МОП-транзисторами, представляет собой повышающий автотрансформатор, предназначенный для реагирования на коммутируемое сетевое напряжение постоянного тока и для генерирования пропорционально повышенного напряжения 400 В на его клеммах за счет противо-ЭДС.

     

    Однако с введением питания PWM для MOSFET нижнего плеча эти 400 В от катушки можно контролировать пропорционально любому желаемому более низкому среднеквадратичному значению.

    Таким образом, при максимальной ширине ШИМ мы можем ожидать, что напряжение будет 400 В, а при минимальной ширине оно может быть оптимизировано близко к нулю.

    ШИМ настраивается с помощью пары микросхем IC 555 для генерации изменяющегося ШИМ в ответ на изменение входного напряжения сети, однако этот отклик сначала инвертируется перед подачей питания на полевые МОП-транзисторы, что означает, что при падении входного напряжения ШИМ становятся шире и наоборот.

    Чтобы правильно настроить этот ответ, предустановка 1K, показанная на выводе № 5 IC2 в цепи ШИМ, отрегулирована таким образом, чтобы напряжение на катушке автотрансформатора составляло около 200 В, когда на входе около 100 В, в этот момент ШИМ может быть на уровне максимальной ширины, и с этого момента ШИМ становятся более узкими по мере увеличения напряжения, обеспечивая почти постоянное выходное напряжение около 220 В.

    Таким образом, если сетевой вход становится выше, ШИМ пытается понизить его, сужая импульсы, и наоборот.

    Как сделать повышающий трансформатор.

    Ферритовый трансформатор нельзя использовать для описанной выше схемы стабилизатора сетевого напряжения с Н-образным мостом от 100 В до 220 В, поскольку базовая частота регулируется на 50 или 60 Гц, поэтому идеальным выбором для применения становится высококачественный трансформатор с многослойным железным сердечником.

    Его можно изготовить, намотав один конец в конец катушки приблизительно из 400 витков на ламинированный железный сердечник EI, используя 10 жил провода 25 SWG… это приблизительное значение, а не расчетные данные… пользователь может воспользоваться помощью профессионального производителя автомобильных трансформаторов или намотчиков для получения действительно необходимого трансформатора для данного приложения.

    В связанном pdf-документе написано, что его предлагаемая конструкция не требует преобразования переменного тока в постоянный для схемы, что выглядит некорректно и практически невыполнимо, потому что если вы используете инвертор с ферритовым повышающим трансформатором, то входной переменный ток имеет быть сначала преобразованы в DC.

    Как сделать своими руками стабилизатор напряжения 220в: Стабилизатор напряжения 220В своими руками: схема, принцип действия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *