Где используют светодиоды – принцип действия, схемы, примеры и т.д.

Содержание

принцип действия, схемы, примеры и т.д.

Светодиод — диод с простым P-N переходом, главной особенностью которого является то, что он испускает свет, когда через него проходит ток. Используется во многих цифровых дисплеях, а также в других типах индикаторных устройств.

Светодиод

Обратите внимание на основы электричества и на приборы электроники.

Принцип работы светодиода

Основные рабочие характеристики любого светоизлучающего диода сходны с характеристиками обычного диода. Когда подается напряжение, то электроны двигаются от материала N-типа через P-N переход и соединяются с отверстиями в материале P-типа. В обычных диодах энергия, которая возникает в результате соединения электронов с отверстиями, выделяется в виде тепла. Однако, когда речь идет о светодиодах, то энергия в них выделяется в первую очередь в виде света.

Схема светодиода

Светодиоды могут изготавливаться таким образом, что будут испускать красный, зеленый, голубой, инфракрасный или ультрафиолетовый свет. Это достигается путем изменения количества и типа материалов, которые используются в качестве присадки. Яркость света также может изменяться, что осуществляется с помощью управления количеством тока, проходящего через светодиод. Однако, как и любой другой диод, СИД имеет предельные значения тока, которые он может выдержать.

Где используются светодиоды

Одной из основных областей применения светодиодов является использование их в качестве сигнальных лампочек. Например, этот прибор может использоваться для того, чтобы проконтролировать идет ли по цепи ток или она обесточена.

Цепь с сигнальной лампочкой представляет собой ряд приборов, последовательно соединенных между собой: светодиод, резистор, выключатель и источник постоянного тока.

Схема типичной цепи с сигнальной лампочкой

Когда выключатель цепи с сигнальной лампочкой замкнут, то напряжение прямого смещения от источника тока подается на светодиод (который разработан таким образом, чтобы срабатывать только, когда имеется прямое смещение). Электроны, которые прорываются через P-N переход, соединяются с отверстиями, в результате чего энергия высвобождается в виде света. Резистор, установленный в этой цепи, ограничивает протекание тока по ней, с тем, чтобы защитить светодиод от повреждений, которые может вызвать чрезмерный ток.

Светодиоды могут также использоваться в цифровых дисплеях, например, в наручных часах или калькуляторах.

С помощью высвечивания различных комбинаций из семи элементов на дисплее можно отображать любую цифру от нуля до девяти.

Цифровой дисплей на калькуляторе из семи элементов

Каждый светодиод соединен последовательно с резистором и выключателем, где каждый выключатель представляет собой внешнюю управляющую цепь. Выключатели имеют обозначения от А до G, чтобы соответствовать элементам дисплея. Семь последовательных проводов соединены параллельно с источником постоянного тока. Для того, чтобы подать питание на какой-либо светодиод, замыкается соответствующий выключатель. Каждый последовательно включенный в цепь резистор ограничивает ток, проходящий по проводу, и, тем самым, предотвращает повреждение светодиодов от чрезмерно большого тока.

Схема внешней цепи управления для цифрового дисплея калькулятора

Цифры появляются на цифровом дисплее в результате различных сочетаний семи выключателей. Например, если выключатели А и В замкнуты, то соответствующие элементы на дисплее загорятся и образуют цифру 1. Подобным же образом цифра 2 может быть образована с помощью выключателей A, C, D, F и G, которые будут замкнуты одновременно.

Замыкая соответствующие выключатели в определенных комбинациях, на дисплее можно получать цифры от 0 до 9. Если элементы расположить несколько иным образом, то на дисплее можно получить знак плюса, минуса, десятичные точки или же буквы алфавита.

Светодиоды могут использоваться даже для обеспечения искусственного освещения для роста растений. Основными преимуществами светодиодов в этом случае являются: низкое потребление электричества и тепловыделения, а также возможность настройки необходимого спектра излучения.

kipiavp.ru

Где используются светодиоды

Изобретение первых светодиодов — полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку — относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.

 

Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе — мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного, синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а также конструировать из них дисплеи с выводом полноцветной графики и анимации.
Светодиоды, за счет их малой потребности в электроэнергии, — оптимальный выбор декоративного освещения в местах, где существуют проблемы с энергетикой.

Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся на удивление выразительно и необычно. Доля рынка светотехнических изделий, занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным символом этой нежной и неизбежной революции стало гигантское 500-метровое полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.

 

Где применяют светодиоды?

  • — все виды световой рекламы (вывески, щиты, световые короба и др.)
  • — замена неона
  • — дизайн помещений
  • — дизайн мебели
  • — архитектурная и ландшафтная подсветка
  • — одноцветные дисплеи с бегущей строкой
  • — магистральные информационные табло
  • — полноцветные дисплеи для больших видео экранов
  • — внутреннее и внешнее освещение в автомобилях, грузовиках и автобусах
  • — дорожные знаки и светофоры

Другие сферы применения включают подсветку жидкокристаллических дисплеев в сотовых телефонах, цифровые камеры, а также архитектурное и другие виды освещения. Сектор электронного оборудования включает применение светодиодов в качестве индикаторных ламп в промышленных и потребительских товарах.

mirsvetodiodov.ru

Область применения светодиодных ламп


23.04.2013&nbsp&nbspСветодиодные лампы Фонари

С момента своего создания область применения светодиодных ламп существенно расширилась — ведь сначала они применялись исключительно в электронных устройствах в качестве ламп индикации и оповещения.

И только относительно недавно светодиодные лампы сначала начали использоваться как источник декоративного освещения, а со временем, и как полноценный источник света.

Современная область применения светодиодных ламп достаточно широка, — начиная от использования в электронных приборах, осветительных приборах автомобилей и заканчивая освещением квартир, улиц и проспектов.

Где используются светодиодные лампы?

В качестве источника освещения светодиодные лампы применяются в следующих основных областях:

  • Светодиодные лампы для уличного освещения, которые позволяют получить значительную экономию электроэнергии, ведь дешевые фонари, которые использовались раньше для освещения городских улиц имели высокий уровень потребления электроэнергии.
  • Светодиодные лампы для производственных и офисных целей позволяющие освещать производственные и офисные помещения различной площади и назначения.
  • Светодиодные лампы для освещения производственных зданий и архитектурных сооружений. Основная сфера применения ламп этого типа, — внешняя подсветка зданий и сооружений.
  • Бытовые светодиодные лампы, подразделяющиеся на два основных типа, — лампы освещения и декоративные лампы.

Кроме этого, светодиодные лампы применяются и в светодиодных прожекторах, которые используются во многих областях, и позволяют получать мощные и надежные источники света.

Еще одна область применения светодиодных ламп, — всевозможные компактные переносные фонари и небольшие прожекторы работающие на автономных источниках питания, таких, как батарейки, или аккумуляторы.

В целом, область применения светодиодных ламп расширяется с каждым годом, ведь на сегодняшний день светодиодные лампы являются самым надежным и долговечным источником света, позволяющем к тому же значительно снизить уровень потребляемой электроэнергии.

Приобрести светодиодные лампы можно как в розничных торговых точках осуществляющих продажу электротехнической продукции и светильников, так и в оптовых и мелкооптовых магазинах.

При этом лучше всего приобретать светодиодные лампы оптом, что позволяет значительно сэкономить финансовые средства на обустройство необходимого освещения.

Светодиодные лампы: особенности и преимущества Ассортимент светодиодных ламп на рынке

sputnikenergy.ru

Светодиод: устройство, принцип работы, преимущества

Светодиод: устройство, принцип работы, преимущества


Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели — все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на слуху. Говорят, за ними будущее.


Светодиоды излучают не только уникальный по своим характеристикам свет, но и завидный оптимизм по поводу своего места на рынке светотехники. Особенно активно экспансия LED разворачивается в области интерьерного оформления и светодизайна.


Настоящая публикация не случайно построена в форме вопросов и ответов (FAQ, frequently asked questions — часто задаваемые вопросы). Именно так заинтересованный человек подходит к новому для него объекту, с тем чтобы «пощупать» его с разных сторон и уж потом решить: нужен — не нужен. А мне задавать правильные вопросы и находить на них верные ответы помогал профессор МГУ Александр Эммануилович Юнович, один из ведущих российских специалистов по светодиодам.

1. Что такое светодиод?


Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED.

2. Из чего состоит светодиод?


Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.


Рис. 1. Конструкция светодиода Luxeon фирмы Lumileds lighting.

3. Как работает светодиод?


Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.


Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.


Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче?


Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод?


В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод?


Только одним — ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2-3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения?


Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии.


В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало светодиодов синего, сине-зеленого и белого цвета.


К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода?


Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой светодиод?


Голубые светодиоды можно сделать на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?)


У светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды.


Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но… проблему не удавалось решить до конца 80-х годов.


Первым, еще в 70-х, голубой светодиод на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире — дорого и не так уж ярко, к тому же p-n-переход нехорош…» — и работы Панкова не поддержали.


Между тем группа Сапарина и Чукичева из МГУ обнаружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и даже запатентовала устройство оптической памяти. Но тогда загадочное явление объяснить не удалось.


Это сделали японцы — профессор И. Акасаки и доктор X. Амано из университета Нагоя. Обработав пленку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирующий слой р-типа с высокой концентрацией дырок. Однако разработчики светодиодов не обратили должного внимания на их публикации.


Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами профессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное сканирование, что смог получить эффективно инжектирующие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой светодиод.


Фирма Nichia запатентовала ключевые этапы технологии и к концу 1997 года выпускала уже 10-20 млн голубых и зеленых светодиодов в месяц, а в январе 1998 года приступила к выпуску белых светодиодов.

10. Что такое квантовый выход светодиода?


Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электроннодырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим теплоотводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а для синих — 35%.


Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

11. Как получить белый свет с использованием светодиодов?


Существует три способа получения белого света от светодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше?


У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.


Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод. Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов?


Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).


При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.


Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры?


Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.


Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод?


Как видно из рисунка 2, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.





Рис. 2. Зависимость силы тока от напряжения питания светодиода.

16. Для чего светодиоду требуется конвертор?


Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

17. Можно ли регулировать яркость светодиода?


Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы светодиода?


Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20-50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

19. «Портится» ли цвет светодиода с течением времени?


Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

20. Не вреден ли светодиод для человеческого глаза?


Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.


Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного освещения системой зрения человека».

21. Когда и как сверхъяркие светодиоды появились в России?


Об этом лучше всех расскажет профессор Юнович.


Люминесценцию карбида кремния впервые наблюдал Олег Владимирович Лосев в Нижегородской радиотехнической лаборатории в 1923 г. и показал, что она возникает вблизи p-n-перехода. Первая научная статья о кристаллах нитрида галлия была опубликована профессором МГУ Г.С. Ждановым в 30-х гг. Люминесценцию в гетероструктурах на основе арсенида галлия впервые исследовали в лаборатории Ж.И. Алферова в 60-х гг. и показали, что можно создать структуры с внутренним квантовым выходом близким к 100%. Разработки структур и светодиодов на основе нитрида галлия велись в ленинградских Политехническом и Электротехническом институтах, в Калуге, в Зеленограде в 70-х гг., но они тогда не привели к созданию эффективных голубых светодиодов.


В 1995 году я прочел первые статьи Накамуры и понял, что «голубая проблема» в принципе решена. Тогда же я получил грант соросовского фонда. В декабре на эти деньги я смог поехать на конференцию в США, и там профессор Жак Панков познакомил меня с Ш. Накамурой. Я забросил наживку: мол, хочу приобщить студентов Московского университета к передовым достижениям в области голубых светодиодов и рассказать им о столь замечательном изобретении. Рыбка клюнула, и в феврале я получил от д-ра Ш. Накамуры из Японии бандеролью 10 светодиодов от фиолетового до зеленого. Все потом оказалось просто — фирма Nichia Chemical начинала выпуск светодиодов на рынок и была заинтересована в научной рекламе. В лаборатории МГУ мы их досконально исследовали, сняли все характеристики и получили новые научные результаты. Д-р Ш. Накамура дал любезное согласие на совместную публикацию наших первых статей.


Одновременно специалисты из группы Бориса Ферапонтовича Тринчука в Зеленограде продемонстрировали образцы зеленых светодиодов начальникам из ГАИ и получили положительный отзыв. Все дело в том, что эта группа сделала опытный образец светодиодного светофора, но у них не было хороших зеленых светодиодов. Светофоры с новыми сверхъяркими зелеными светодиодами намного превосходили светофоры с лампами, и московское правительство сделало заказ на 1000 светодиодных светофоров к 850-летию Москвы. Такое везение!


Как раз тогда у нас гостила киргизская скрипачка Райкан Карагулова — выпускница Московской консерватории, ученица моей жены, которая работала в Японии первым концертмейстером симфонического оркестра в Осаке. Выяснилось, что место ее работы находится неподалеку от фирмы Nichia Chemical! Б.Ф. Тринчук дал ей тысячу долларов и попросил купить на них и прислать на мой адрес 200 зеленых светодиодов. Из них были изготовлены первые светофоры из той юбилейной тысячи. Москва стала первым в мире городом с массовым применением светодиодных светофоров.


Наши ученые и инженеры в НИИ «Сапфир» пытались повторить достижение японцев и изготовить структуры на основе нитридов для голубых и зеленых светодиодов на старой эпитаксиальной установке, которую пришлось модернизировать, чтобы достичь более высоких температур и давлений. Но инициатива заглохла из-за отсутствия денег и интереса руководства.

22. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей?


Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.




Рис. 3. Схематическое представления светодиода.


За один процесс, который длится несколько часов, можно вырастить структуры на 6-12 подложках диаметром 50-75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5-2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это технология, требующая высокой культуры.


Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к n- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24 x 0,24 до 1 x 1 мм2/.


Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светодиода определяется этими этапами высокой технологии.


Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.


Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.


Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

23. Кто в мире сегодня производит светодиоды?


Чтобы делать качественные светодиоды в нужном количестве, понадобилось слияние двух отраслей — электронной и светотехнической. Все западные гиганты, производящие светодиоды для светотехники по полному циклу, начиная с производства чипов и заканчивая различными светодиодными модулями и сборками, а также светильниками на их основе, идут по этому пути. General Electric заключила союз с производителем полупроводниковых приборов Emcore, создав компанию GEL Core. Philips Lighting совместно с Agilent, дочерней компанией Hewlett-Packard, создали предприятие LumiLeds. Osram объединяет усилия с полупроводниковыми предприятиями своей материнской компании Siemens. Как заметил Макаранд Чипалкатти, менеджер по маркетингу из подразделения Opto Semiconductors компании Osram Sylvania, специализирующемуся на устройствах LED, производители светотехники сами уничтожают свой бизнес. Но если сегодня не «наступить на горло собственной песне», то завтра придут другие и сделают это куда более жестко.


Впрочем, существуют компании, специализирующиеся только на производстве чипов. Это предприятия радиоэлектронной промышленности, и они не занимаются светотехникой. К их числу относится Nichia Corporation.

24. Каковы основные производители светодиодных модулей и сборок и представленные ими модельные ряды?


Чипы и отдельные светодиоды производят компании Nichia Corporation, Сгее, LumiLeds Lighting, Opto Technology, Osram Opto Semiconductors, GEL Core. Массовое производство структур и чипов для светодиодов ведут тайваньские фирмы Lite-On, Taiwan Oasis и др.


В России светодиоды производят компании Корвет Лайт, Светлана Оптоэлектроника, Оптэл, Оптоника. По конструкции и технологическому исполнению наши светодиоды не уступают зарубежным, специалисты перечисленных компаний имеют соответствующие патенты. В Москве и Санкт-Петербурге есть возможность выращивать собственные чипы — например, эпитаксиальная установка имеется в Санкт-Петербургском физтехе, — но для промышленного производства необходимо крупное финансирование, и пока наши компании используют зарубежные чипы.

25. Где сегодня целесообразно применять светодиоды?


Светодиоды находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности.

26. Возможности и применение


Изобретение первых светодиодов — полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку — относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.


Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе — мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного, синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а также конструировать из них дисплеи с выводом полноцветной графики и анимации.


Светодиоды, за счет их малой потребности в электроэнергии, — оптимальный выбор декоративного освещения в местах, где существуют проблемы с энергетикой.


Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий, отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого неон удерживает свои позиции в сегменте подсветки вывесок, является пока еще более высокая стоимость светодиодов.

27. Преимущества


Экономично…


Одним из достоинств светодиодов является их долговечность. Данные источники света обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной работы. Для сравнения — максимальный срок работы неоновых и люминесцентных ламп составляет 10 тыс. часов.


За это же время в световом модуле, использующем люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания придется заново «вкручивать» от 30 до 40 раз. Использование светодиодных модулей позволяет снизить затраты на электроэнергию до 87%!


Удобно…


Светодиодный модуль — многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.


Надежно…


Есть надежность совершенно особого рода — та, от которой порою зависят человеческие жизни. Применение светодиодов в устройствах отображения информации (дорожные знаки, светофоры, информационные табло и т.д.) ведет к значительному увеличению расстояния их восприятия человеческим глазом. Неслучайно во многих крупных городах развитых стран уже нет обычных светофоров, а светодиодные схемы используются в воздушных и надводных навигационных системах.


Другим аспектом, благодаря которому светодиодам некоторыми заказчиками отдается предпочтение, являются их прочность и антивандальные качества. В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, — 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. Очевидно, что при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. У газоразрядных трубок, в отличие от светодиодов, есть порог срабатывания: чтобы источник света загорелся, в начале необходимо подать на разряд необходимое напряжение. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур. Известно, что на морозе внутри газоразрядных источников света происходит вымерзание ртути, и это приводит к снижению яркости свечения. При отрицательных температурах также возникают проблемы с включением неона. Светодиоды лишены этих минусов.


Красиво…


Если бы LED-технологии не изобрели светотехники, их бы создали дизайнеры. Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Плавные, почти незаметные для глаза световые переходы от пика к пику в плане выразительности, конечно, уступают живописи, но оставляют далеко позади другие источники света. Изощренная цветодинамика, характерная для светодиодных модулей, способна удовлетворить требования самого требовательного дизайнера. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.


Представительно…


Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся на удивление выразительно и необычно. Доля рынка светотехнических изделий, занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным символом этой нежной и неизбежной революции стало гигантское 500-метровое полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.

duray.ru

светодиод

Оглавление

Введение

Понятие,
виды, структура светодиодов

Свойства
и характеристики светодиодов

Возможности,
применение и недостатки светодиодов

Заключение

Список
литературы

Понятие,
виды, структура светодиодов

Светодиод-это
полупроводниковый прибор, преобразующий
электрический ток непосредственно в
световое излучение.

Так
как светодиод является полупроводниковым
прибором, то при включении в цепь
необходимо соблюдать полярность.
Светодиод имеет два вывода, один из
которых катод («минус»), а другой —
анод («плюс»).

Схема
лампы на светодиодах

Лампы
на светодиодах всё более популярны.
Цены на светодиоды постепенно снижаются,
и замена ламп накаливания на светодиоды
выглядит все более привлекательной.
Экономичность и долговечность, удешевление
и улучшение качественных характеристик
светодиодов, располагают к тому, что
самодельная лампа на светодиодах это
реальность. Лампа на светодиодах своими
руками — это здорово.

Несложная
схема светодиодной лампы для изготовления
в домашних условиях показана на рисунке.

На
этой схемы видно, что для питания
светодиодов используется мостовой
выпрямитель с емкостным балластом,
который ограничивает выходной ток.
Такие источники питания экономичны и
просты, не боятся коротких замыканий,
их выходной ток ограничивается емкостным
сопротивлением конденсатора. Подобные
выпрямители часто называют стабилизаторами
тока.

Светодиод
состоит из полупроводникового кристалла
на подложке, корпуса с контактными
выводами и оптической системы. Современные
светодиоды мало похожи на первые
корпусные светодиоды, применявшиеся
для индикации. Конструкция мощного
светодиода серии Luxeon, выпускаемой
компанией Lumileds, схематически изображена
на рисунке.

Принцип
работы светодиода заключается в
следующем: свечение возникает при
рекомбинации электронов и дырок в
области p-n-перехода. Значит, прежде всего
нужен p-n-переход, то есть контакт двух
полупроводников с разными типами
проводимости. Для этого приконтактные
слои полупроводникового кристалла
легируют разными примесями: по одну
сторону акцепторными, по другую —
донорскими.

Но
не всякий p-n-переход излучает свет.
Почему? Во-первых, ширина запрещенной
зоны в активной области светодиода
должна быть близка к энергии квантов
света видимого диапазона. Во-вторых,
вероятность излучения при рекомбинации
электронно-дырочных пар должна быть
высокой, для чего полупроводниковый
кристалл должен содержать мало дефектов,
из-за которых рекомбинация происходит
без излучения. Эти условия в той или
иной степени противоречат друг другу.

Чем
больший ток проходит через светодиод,
тем он светит ярче. Ведь чем больше ток,
тем больше электронов и дырок поступают
в зону рекомбинации в единицу времени.
Но ток нельзя увеличивать до бесконечности.
Из-за внутреннего сопротивления
полупроводника и p-n-перехода диод
перегреется и выйдет из строя [1].

Светодиод
хорош тем, что в нём, в отличие от лампы
накаливания или люминесцентной лампы,
электрический ток преобразуется
непосредственно в световое излучение,
и теоретически это можно сделать почти
без потерь. Действительно, светодиод
(при должном теплоотводе) мало нагревается,
что делает его незаменимым для некоторых
приложений. Далее, светодиод излучает
в узкой части спектра, его цвет чист,
что особенно ценят дизайнеры, а УФ- и
ИК-излучения, как правило, отсутствуют.
Светодиод механически прочен и
исключительно надежен, его срок службы
может достигать 100 тысяч часов, что почти
в 100 раз больше, чем у лампочки накаливания,
и в 5 — 10 раз больше, чем у люминесцентной
лампы. Наконец, светодиод — низковольтный
электроприбор, а стало быть, безопасный.

Рис.
1. Световая отдача различных типов
светодиодов в сравнении с другими
источниками света

Плох
светодиод только одним — ценой. Пока
что цена одного люмена, излученного
светодиодом, в 100 раз выше, чем галогенной
лампой. Но специалисты утверждают, что
в ближайшие 2 — 3 года этот показатель
будет снижен в 10 раз.

Цвет
светодиода зависит исключительно от
ширины запрещенной зоны, в которой
рекомбинируют электроны и дырки, то
есть от материала полупроводника, и от
легирующих примесей. Чем «синее»
светодиод, тем выше энергия квантов, а
значит, тем больше должна быть ширина
запрещенной зоны.

Голубые
светодиоды можно сделать на основе
полупроводников с большой шириной
запрещенной зоны — карбида кремния,
соединений элементов II и IV группы или
нитридов элементов III группы. (Помните
таблицу Менделеева?)

У
светодиодов на основе SiC оказался слишком
мал кпд и низок квантовый выход излучения
(то есть число излученных квантов на
одну рекомбинировавшую пару). У светодиодов
на основе твердых растворов селенида
цинка ZnSe квантовый выход был выше, но
они перегре­вались из-за большого
сопротивления и служили недолго.
Оставалась надежда на нитриды.

Квантовый
выход — это число излученных квантов
света на одну рекомбинировавшую
электронно-дырочную пару. Различают
внутренний и внешний квантовый выход.
Внутренний — в самом p-n-переходе, внешний
— для прибора в целом (ведь свет может
теряться «по дороге» — поглощаться,
рассеиваться). Внутренний квантовый
выход для хороших кристаллов с хорошим
тепло-отводом достигает почти 100%, рекорд
внешнего квантового выхода для красных
светодиодов составляет 55%, а для синих
— 35%.

Внешний
квантовый выход — одна из основных
характеристик эффективности светодиода.

Изобретение
синих светодиодов замкнуло «RGB-круг» и
сделало возможным получение светодиодов
белого свечения. Существует четыре
способа создания белых СД, каждый со
своими достоинствами и недостатками.
Один из них – смешение излучения СД
трёх или более цветов. На рис. 2 показано
получение белого света путем смешивания
в определённой пропорции излучения
красного, зелёного и синего светодиодов.

В
принципе такой способ должен быть
наиболее эффективным. Для каждого из
СД – красного, зелёного или голубого –
можно выбрать значения тока, соответствующие
максимуму его внешнего квантового
выхода излучения. Но при этих токах и
напряжениях интенсивности каждого
цвета не будут соответствовать значениям,
необходимым для синтеза белого цвета.
Этого можно достигнуть, изменяя число
диодов каждого цвета и составляя источник
из многих диодов. Для практических
применений этот способ неудобен,
поскольку нужно иметь несколько
источников различного напряжения, много
контактных вводов и устройства,
смешивающие и фокусирующие свет от
нескольких СД. Второй и третий способы
– смешение голубого излучения СД с
излучением либо жёлто-зелёного люминофора,
либо зелёного и красного люминофоров,
возбуждаемых этим голубым излучением.
На рис. 3 показано получение белого света
с помощью кристалла синего светодиода
и нанесённого на него слоя жёлтого
люминофора [6].

Эти
способы наиболее просты и в настоящее
время наиболее экономичны. Состав
кристалла с гетероструктурами на основе
InGaN/GaN подбирается так, чтобы его спектр
излучения соответствовал спектрам
возбуждения люминофоров. Кристалл
покрывается слоем геля с порошком
люминофора таким образом, чтобы часть
голубого излучения возбуждала люминофор,
а часть – проходила без поглощения.
Форма держателя, толщина слоя геля и
форма пластикового купола рассчитываются
и подбираются так, чтобы излучение имело
белый цвет в нужном телесном угле. Сейчас
исследуется около десятка различных
люминофоров для белых СД. На рис. 4
показано строение 5мм светодиода,
излучающего белый свет. Четвертый способ
– смешение из лучения трёх люминофоров
(красного, зелёного и голубого),
возбуждаемых ультрафиолетовым
светодиодом. На рис. 5 показано получение
белого света с помощью ультрафиолетового
светодиода и RGB-люминофора. Этот способ
использует технологии и материалы,
которые разрабатывались в течение
многих лет для люминесцентных ламп. Он
требует только два контактных ввода на
один излучатель. Но этот способ связан
с принципиальными потерями энергии при
преобразовании света от диода в
люминофорах. Кроме того, эффективность
источника излучения уменьшается, т.к.
разные люминофоры имеют разные спектры
возбуждения люминесценции, не точно
соответствующие УФ-спектру излучения
кристалла СД. Светоотдача белых СД ниже,
чем светоотдача СД с узким спектром,
поскольку в них происходит двойное
преобразование энергии, часть её теряется
в люминофоре. В настоящее время светоотдача
лучших белых СД 25…30 лм/Вт.

Свойства
и характеристики светодиодов

Светодиод
– низковольтный прибор. Обычный
светодиод, применяемый для индикации,
потребляет от 2 до 4В постоянного
напряжения при токе до 50 мА. Светодиод,
который используется для освещения,
потребляет такое же напряжение, но ток
выше — от нескольких сотен мА до 1А в
проекте. В светодиодном модуле отдельные
светодиоды могут быть включены
последовательно, и суммарное напряжение
оказывается более высоким (обычно 12 или
24 В).

При
подключении светодиода необходимо
соблюдать полярность, иначе прибор
может выйти из строя. Напряжение пробоя
указывается изготовителем и обычно
составляет более 5В для одного светодиода.
Яркость светодиода характеризуется
световым потоком и осевой силой света,
а также диаграммой направленности.
Существующие светодиоды разных
конструкций излучают в телесном угле
от 4 до 140 градусов. Цвет, как обычно,
определяется координатами цветности
и цветовой температурой, а также длиной
волны излучения.

Для
сравнения эффективности светодиодов
между собой и с другими источниками
света используется светоотдача: величина
светового потока на один ватт электрической
мощности. Также интересной маркетинговой
характеристикой оказывается цена одного
люмена.

Реакция
светодиода на повышение температуры
такова: p-n-переход – это «кирпичик»
полупроводниковой электронной техники,
представляющий собой соединённые вместе
два куска полупроводника с разными
типами проводимости (один с избытком
электронов – «n-тип», второй с избытком
дырок – «p-тип»). Если к p-n переходу
приложить «прямое смещение», т.е.
подсоединить источник электрического
тока плюсом к р-части, то через него
потечёт ток. Современные технологии
позволяют создавать интегральные схемы,
содержащие огромное количество p-n
переходов на одном кристалле; так, в
процессоре Pentium-IV их количество измеряется
десятками миллионов [1].

Нас
интересует, что происходит после того,
как через прямо смещённый p-n переход
пошёл ток, а именно момент рекомбинации
носителей электрического заряда –
электронов и дырок, когда имеющие
отрицательный заряд электроны «находят
пристанище» в положительно заряженных
ионах кристаллической решётки
полупроводника. Оказывается, что такая
рекомбинация может быть излучательной,
при этом в момент встречи электрона и
дырки выделяется энергия в виде излучения
кванта света – фотона. В случае
безизлучательной рекомбинации энергия
расходуется на нагрев вещества. В природе
существует как минимум 5 видов излучательной
рекомбинации носителей зарядов, в том
числе так называемая прямозонная
рекомбинация. Впервые это явление в
далёкие 20-е годы исследовал О.В. Лосев,
наблюдавший свечение кристаллов
карборунда (карбид кремния SiC). Для
большинства полупроводниковых диодов
это явление – просто «побочный эффект»,
не имеющий практического смысла. Для
светодиодов же излучательная рекомбинация
– физическая основа их работы.

Говоря
о температуре светодиода, необходимо
различать температуру на поверхности
кристалла и в области p-n-перехода. От
первой зависит срок службы, от второй
— световой выход. В целом с повышением
температуры p-n-перехода яркость светодиода
падает, потому что уменьшается внутренний
квантовый выход из-за влияния колебаний
кристаллической решетки. Поэтому так
важен хороший теплоотвод.

Применение
и недостатки светодиодов

Изобретение
первых светодиодов — полупроводниковых
диодов в эпоксидной оболочке, выделяющих
монохроматический свет при подключении
к электротоку — относится к 1960-м годам.
Однако до 1980-х низкая яркость, отсутствие
светодиодов синего и белого цветов, а
также высокие затраты на их производство
ограничивали их массовое применение в
качестве источников света. Поэтому
светодиоды в основном использовали в
наружных электронных табло, ими
оборудовали системы регулирования
дорожного движения, применяли в
оптоволоконных системах передачи данных
и медицинском оборудовании.

Срок
службы светодиодов, превышающий в 6-8
раз долговечность люминесцентных ламп,
относительная простота в работе с ними
на этапе сборки изделий, отсутствие
необходимости в регулярном обслуживании
и их антивандальные качества делают
эти источники света конкурентоспособными
с более традиционными -газоразрядными,
люминесцентными лампами и лампами
накаливания. Одним из немногих и
существенных аспектов, за счет которого
неон удерживает свои позиции в сегменте
подсветки вывесок, является пока еще
более высокая стоимость светодиодов.

Преимущества

Экономично…

Одним
из достоинств светодиодов является их
долговечность. Данные источники света
обладают ресурсом использования 100 000
часов, а ведь это 10-12 лет непрерывной
работы. Для сравнения — максимальный
срок работы неоновых и люминесцентных
ламп составляет 10 тыс. часов.

За
это же время в световом модуле, использующем
люминесцентные лампы, их нужно будет
сменить 8-10 раз, а лампы накаливания
придется заново «вкручивать» от 30 до
40 раз. Использование светодиодных
модулей позволяет снизить затраты на
электроэнергию до 87%!

Удобно…

Светодиодный
модуль — многокомпонентная структура
с неприхотливой схемой подключения. В
цепочке, скажем, из полусотни светодиодов
один-два неисправных не только не выводят
рекламный фрагмент из строя, но даже не
влияют на суммарное световое излучение.
Гигантский ресурс работы светодиодов
практически решает проблемы, связанные
с необходимостью их замены. Кроме того,
светоизлучающие диоды способны надежно
функционировать в самом широком диапазоне
рабочих температур.

Надежно…

Есть
надежность совершенно особого рода —
та, от которой порою зависят человеческие
жизни. Применение светодиодов в
устройствах отображения информации
(дорожные знаки, светофоры, информационные
табло и т.д.) ведет к значительному
увеличению расстояния их восприятия
человеческим глазом. Неслучайно во
многих крупных городах развитых стран
уже нет обычных светофоров, а светодиодные
схемы используются в воздушных и
надводных навигационных системах.

Красиво…

Если
бы LED-технологии не изобрели светотехники,
их бы создали дизайнеры. Светодиоды, в
отличие от ламп с неоном, имеют практически
неограниченные возможности для «игры»
со спектрами, цепочки которых можно
выстроить таким образом, чтобы световые
акценты точно работали на образ. Плавные,
почти незаметные для глаза световые
переходы от пика к пику в плане
выразительности, конечно, уступают
живописи, но оставляют далеко позади
другие источники света. Изощренная
цветодинамика, характерная для
светодиодных модулей, способна
удовлетворить требования самого
требовательного дизайнера. Интересно,
что игра со спектрами имеет и экологическое
значение. Ведь кривые чувствительности,
скажем, растений и человеческого глаза
не совпадают: те спектры, которые
комфортны для нашего глаза, часто
дискомфортны для растений, и наоборот.
Зональное использование различных
светодиодных «цепочек» в тех интерьерах,
где одновременно пребывают и растения,
и человек, снимают эту проблему.

Представительно…

Светодиодные
модули необычайно компактны. Различные
сувениры, миниатюрные стенды и компактные
табло, украшенные светодиодной символикой
компании, смотрятся на удивление
выразительно и необычно. Доля рынка
светотехнических изделий, занимаемая
светодиодами, составляет ничтожную
долю. В развитых странах, особенно в
крупных городах и столицах, она медленно,
но верно возрастает. Своеобразным
символом этой нежной и неизбежной
революции стало гигантское 500-метровое
полотно из светодиодов, непрерывно
протянувшееся над главной улицей
Лас-Вегаса.

Поверхностный
взгляд на использование светодиодов
сразу отмечает их высокую стоимость –
главный недостаток по сравнению с
лампами накаливания и неоновыми трубками
различных типов. Если говорить о цене
изделия как таковой, то LED-изделия
действительно «не каждому по карману».
До сих пор затраты на светодиодные
модули — два раза выше стоимости неонового
изделия аналогичной яркости. Однако
производители по всему миру продолжают
наращивать мощности по изготовлению
светодиодов, и цены на данные источники
света неуклонно понижаются. Практика
показывает, что совокупные затраты на
приобретение и эксплуатацию светодиодных
изделий, в конечном итоге оказываются
в 2 — 2,5 раза ниже затрат на обычные
светильники.

Также
недостатком при использовании светодиодов
в конструировании объемных букв средних
и крупных размеров можно считать их
миниатюрность, из-за которой требуется
объединять многочисленные отдельные
светодиоды в группы. Чтобы обеспечить
яркий и красочный свет, мгновенно
привлекающий внимание, требуется большое
количество светодиодов. В данном случае
возникает необходимость использования
универсальных модулей: один или два
светодиода, которые можно интегрировать
практически в любой рекламный образ.

Где
применяют светодиоды?

все
виды световой рекламы (вывески, щиты,
световые короба и др.)

замена
неона

дизайн
помещений

дизайн
мебели

архитектурная
и ландшафтная подсветка

одноцветные
дисплеи с бегущей строкой

магистральные
информационные табло

полноцветные
дисплеи для больших видео экранов

внутреннее
и внешнее освещение в автомобилях,
грузовиках и автобусах

дорожные
знаки и светофоры

Другие
сферы применения включают подсветку
жидкокристаллических дисплеев в сотовых
телефонах, цифровые камеры, а также
архитектурное и другие виды освещения.
Сектор электронного оборудования
включает применение светодиодов в
качестве индикаторных ламп в промышленных
и потребительских товарах.

studfiles.net

Светодиодное освещение — что это такое и где их используют?

светодиодные лампы

Рост интереса к светодиодам возрастает с каждым днем, притом это происходит гораздо быстрее, чем растет область их применения. Но создается впечатление, что потребители и производители, покупатели и продавцы не совсем понимают тенденции в этой сфере. И лишь смелые решения дизайнеров в полную силу используют весь потенциал светодиодов.

Прошло то время, когда только ученые занимались светодиодами. Сейчас об этом продукте знают даже школьники. Светодиод отличается тем, что излучает свет, отличающийся по своим характеристикам и перспективами в своей области применения. Активно внедряют светодиоды в оформление интерьеров и светодизайна.

Для того, чтобы как можно более полно представить себе всю значимость такой разработки как светодиоды, нужно разобраться, что же такое светодиод, выяснить его недостатки и положительные стороны.

Что такое светодиод?

светодиод состоящий из полупроводников

Светодиод – это прибор, состоящий из полупроводников. Он предназначен для обработки электрического тока в световое излучение, то есть, электромагнитное излучение видимой части спектра. Что касается названия, то аббревиатура «LEG», расшифровывается как – «Light Emitting Diode» и обозначает все тот же «светодиод».

Из чего состоит светодиод?

Светодиод состоит из полупроводникового кристалла с оптической системой и контактного вывода. Вся эта несложная конструкция находится в корпусе. Современные светодиоды совсем не похожи на те, что использовались раньше лишь для индикации.

схема светодиодного полупроводника

Основные преимущества светодиодов

Светодиод преобразовывает электрический ток в световое излучение почти без выделения тепла, вследствие чего КПД светодиода достаточно высок.
Вырабатываемый свет светодиода, с точки зрения дизайнеров, является более чистым.
В сравнении с другими лампами срок службы светодиода значительно больше.
Конструкция светодиода прочна и надежна.
Для работы светодиодов не требуется высоких напряжений, а значит, они безопасны.

Получение белого света, используя светодиод

светодиод — получение белого света

Тремя способами получается белый свет при помощи светодиода.

  1. При помощи технологии RGB (аббревиатура расшифровывается как «RED GREEN BLUE»), то есть, путем смешивания трех цветов – зеленого, синего и красного. Вплотную на матрице хаотично размещаются светодиоды трех цветов. При помощи оптической системы эти цвета смешиваются.
  2. На поверхность светодиода, который работает в ультразвуковом диапазоне, наносят люминофоры из трех все тех же цветов – красный, зеленый, синий. По своему принципу метод работы в этом случае похож на действие люминесцентной лампы.
  3. На излучающий синий цвет светодиод наносится желто-зеленый люминофор или красно-зеленый. После смешивания цветов получается белый свет.

Оптические и электрические характеристики светодиодов

Светодиоды – это низковольтные приборы. Если использовать данный прибор для индикации, то будет достаточно 2-4 вольт напряжения при силе тока до 50 мА. Если использовать светодиоды для освещения, то ток в цепи будет колебаться от нескольких сотен мА до одного мА при напряжении 2-4 вольта. В светодиодных модулях светодиоды в электрической цепи соединены последовательно, подобно гирлянде, и для их работы нужно напряжение в 12 или 24 вольт.

Светодиоды работают от постоянного тока в цепи, поэтому при подключении очень важно соблюдать его полярность, иначе прибор просто-напросто не будет работать или совсем выйдет из строя. Часто производители на корпусе светодиодного модуля указывают их рабочее напряжение. По правилам для одного диода оно не должно превышать 5 вольт.

Яркость светодиода зависит от диаграммы направленности и осевой силы светового потока. Излучающий светодиодом свет находится в телесном углу от 4є до 140є, последнее зависит от конструкции светодиода. Цветовые параметры определяются координатами цветности, так называемой длиной волны света и цветовой температурой. Эффективность светодиода определяется отношением величины светового потока к затраченной на него энергии.

яркость светодиода

Для чего нужно стабилизировать ток для светодиодов

Как известно, в рабочей цепи сила тока прямо пропорциональна напряжению, то есть, любое изменение напряжения приведет к увеличению тока. При превышении допустимых значений тока можно уменьшить срок использования светодиодов или совсем вывести их из строя. Так же при нестабильном токе яркость светодиода будет постоянно колебаться.

Допустимо ли регулировать яркость светодиодов

Регулировать яркость светодиодов можно, но с одним примечанием. Регулировка яркости возможна с помощью широтно-импульсивного метода модуляции, но ни в коем случае не за счет снижения напряжения. Широтно-импульсную модуляцию можно достигнуть с помощью управляющего блока ШИМ (часто этот блок совмещен вместе с коллектором управления цветом и блоком питания). Метод заключается в том, что в цепи создается импульсивно-модулированный ток вместо постоянного, и от ширины и частоты импульсов тока будет зависеть яркость свечения. Теперь яркость светодиода можно регулировать. Так же изменить температуру цвета светодиода можно при помощи метода диммирования.

светодиодная лента

От чего зависит срок службы светодиода

Существует мнение, что светодиоды долговечны. Но это не совсем верное мнение. Срок использования светодиодов зависит от их нагрева, а это непосредственно зависит от того, какой силы ток проходит через них. Из этого вытекает, что светодиоды с большей мощностью прослужат меньше, чем те, у которых мощность меньше. В среднем срок использования светодиодов с большой мощностью составляет от 20 тысяч часов до 50. Если яркость светодиода уменьшилась, это является признаком его старения. При снижении яркости на 30% и более следует сменить светодиод на новый.

Вредны ли светодиоды для зрения

По своим свойствам свет, излучаемый светодиодом, очень схож с характеристиками света от люминесцентной лампы. Это значит, что светодиодное излучение похоже на монохроматический свет, что являемся основным отличием от солнечного освещения или лампы накаливания. На данный момент отсутствуют глубокие исследования в этой области, поэтому хорошо это или плохо сказать сложно. Так же нет никаких данных о вреде света, излучаемого светодиодами.

Где наиболее выгодно использовать светодиодное освещение

Область, где применяются светодиоды, достаточно обширна. Их можно применять практически везде, можно лишь исключить производственные помещения, в которых их допускается использовать в качестве аварийного освещения.

Дизайнеры широко используют светодиоды в своих проектах из-за их чистого цвета. Так же светодиодное освещение будет незаменимо в условиях жесткой экономии электричества или при высоких требованиях к электробезопасности.

светодиодное освещение квартирыприменение светодиодов для освещения

Применение и возможности светодиодов

светодиоды в электронных устройствахсветодиоды для обозначения дорожных знаков

Впервые светодиоды были изобретены примерно в 60-е годы 20-го века. Но массовое производство и их применение как основного источника света было довольно ограниченно, так как их изготовление требовало достаточно больших денежных средств, и отсутствовал белый и синий цвет. Из-за этих факторов использование светодиодов было ограничено. В основном их применяли для регулировки дорожного движения, в медицинской технике и для передачи информации в опто — волоконных системах.

Лишь к середине 90-х годов начали появляться сверхяркие светодиоды, а вначале 2000х – синие и белые. Постепенно себестоимость светодиодов снизилась, что привлекло внимание производителей и спонсоров к этому источнику света. После этого область, где применяются светодиоды, значительно расширилась. Сначала их использовали как индикаторы в бытовых электронных устройствах и в качестве подсветки в жидкокристаллических экранах. После того, как стало возможным получать любые оттенки с помощью основных цветов, светодиоды стали использовать для конструирования дисплеев, которые позволяют выводить анимацию и полноцветную графику.

Из-за низкого уровня потребляемой мощности LEG-технологии являются самым оптимальным материалом для декоративного освещения. В отличие от люминесцентных ламп, срок использования светодиодов гораздо больше, — примерно в 6-8 раз. Простота сборки и антивандальные качества делают светодиоды конкурентоспособными наряду с остальными искусственными источниками.

светодиоды в массовое использование

Оцените качество статьи:

electric-tolk.ru

Где используются светодиодные светильники?

Версия для печати

Сравнительно новый вид источников света, светодиодные светильники (led светильники) становятся все популярней как у частных домовладельцев, так и у организаций. В чем отличие этих систем освещения от обычных ламп накаливания и люминесцентных источников света? Где могут использоваться такие осветительные приборы? Об этом будет рассказано в нашей статье.

Светодиод — полупроводниковый кристалл, свечение которого происходит за счет выделения фотонов. Размер такого кристалла составляет доли миллиметра. Цвет, которым светится led светильник, определяется материалом, из которого изготовлен светодиод. Сегодня можно встретить светодиоды самых разных оттенков — белого, желтого, красного, синего и зеленого, причем их стоимость варьируется в зависимости от цвета. Поскольку свечение светодиода близко к монохромному, такой источник света широко используется в качестве элемента различных дизайнерских решений.

Led светильник не имеет спиралей накаливания и стеклянной колбы, не содержит внутри себя газа, что и объясняет его большую прочность, надежность и безопасность по сравнению с традиционными источниками света. Пожалуй, единственный ощутимый недостаток такого освещения — это высокая стоимость осветительных приборов. Именно этот фактор пока сдерживает широкое распространение светодиодных светильников. Тем не менее, перспективы применения этого источника света следует считать обнадеживающими.

Так, всего несколько лет назад светодиоды использовались, в основном, лишь в карманных фонарях, фарах для велосипедов и других мобильных устройствах, то сегодня сфера их применения постепенно расширяется. В наши дни такие приборы — уже не редкость в светофорах, автотранспортных стоп-сигналах, огнях заградительного и габаритного назначения, в устройствах для навигационного обозначения водных путей.

Уличные светодиодные приборы используются для освещения проезжей части, скверов, парков, площадей, проспектов, улиц, парковок и железнодорожных платформ. Аналогичные устройства с успехом применяются для наружного освещения жилых, торговых и производственных зданий.

Сфера применения промышленных светодиодных приборов — освещение территорий логистических центров, территорий заводов и предприятий. Линейные приборы применяются для подсветки витрин, фасадов зданий, в интерьере жилых и промышленных объектов. Наконец, потолочные устройства предназначены для общего освещения помещений, а встраиваемые приборы — для использования в качестве декоративной подсветки.

www.luxon.su

Где используют светодиоды – принцип действия, схемы, примеры и т.д.

Отправить ответ

avatar
  Подписаться  
Уведомление о