Драйвер светодиодов линейный – что это такое, как выбрать и подключить

драйверы мощных светодиодов от Maxim

 

 

Светодиоды — это низковольтные полупроводниковые приборы. Для того чтобы обеспечить длительный срок службы светодиода, необходимо стабилизировать протекающий через него ток, а не напряжение. Дело в том, что даже незначительное изменение прямого напряжения на светодиоде приведет к резкому скачку тока, протекающего через него (рис. 1). В качестве примера взят полноцветный RGBW-светодиод из серии MC-E компании Cree (буква «W» подчеркивает, что светодиоды этой серии обеспечивают еще и белое свечение). Кроме того, падения напряжений на светодиодах разных цветов довольно сильно отличаются. Например, на светодиоде красного цвета оно примерно в 1,5 раза меньше чем на синем, белом или зеленом. Этот фактор необходимо учитывать при последовательном включении, так как при одинаковом количестве последовательно включенных светодиодов разных цветов суммарное падение напряжения может отличаться на 50%.

 

 

Рис. 1. Зависимости прямых падений напряжения от тока для светодиодов разных цветов

Еще одна причина, заставляющая питать светодиоды именно стабилизированным током — это зависимость светового потока от протекающего через них тока. Эту зависимость используют при необходимости регулировки яркости светодиодного светильника или для получения различных цветовых оттенков свечения в полноцветных RGBW. Однако в большинстве случаев требуется именно стабильное равномерное свечение. На рисунке 2 приведены зависимости светового потока для светодиодов разных цветов на примере серии MC-E компании Cree. Из рисунка 2 видно, что для изменения светового потока светодиодов серии MC-E от 20 до 100 процентов ток светодиода должен изменяться от 100 до 350 мА. Диапазон изменения тока обычно регулируется с помощью светодиодных драйверов.

 

 

Рис. 2. Зависимости светового потока от прямого тока через светодиоды разных цветов

 

Линейные драйверы светодиодов

Компания Maxim выпускает линейные и импульсные драйверы светодиодов. Выходной каскад линейных драйверов представляет собой генератор тока на полевом транзисторе с p-каналом. Структура и типовая схема включения линейного драйвера показана на рис. 3.

 

 

Рис. 3. Типовая схема включения и структура линейного драйвера

Ток через последовательно включенные светодиоды задается резистором RSENSE (датчиком тока). Падение напряжения на этом резисторе определяет выходное напряжение дифференциального усилителя DIFF AMP, поступающее на неинвертирующий вход регулирующего усилителя IREG. Регулирующий ОУ сравнивает напряжение ошибки с опорным, формируя на своем выходе потенциал для управления полевым транзистором с p-каналом, работающим в линейном режиме, поэтому рассматриваемые драйверы проигрывают в эффективности импульсным. Однако линейные драйверы обладают простотой применения, низкой ценой и минимальными электромагнитными излучениями (ЭМИ).

В некоторых приложениях (например, в автомобильных) цена и простота применения имеют определяющее значение при выборе светодиодного драйвера. Основные параметры линейных драйверов светодиодов приведены в таблице 1.

Таблица 1. Линейные драйверы мощных светодиодов (Linear HB LED drivers)

Наименование Области применения
Uвх, В Iвых.макс., А ШИМ-димминг (PWM-Dimming) Корпус
Автомобильные приложения Общее
применение
Подсветка
дисплея
MAX16800  Да  Да   6,5…40  0,35  1:30  16-TQFN  
MAX16803  Да  Да   6,5…40  0,35  1:200  16-TQFN  
MAX16804/05/06  Да  Да   5,5…40  0,35  1:200  20-TQFN  
MAX16815  Да  Да   6,5…40  0,1  1:100  6-TDFN  
MAX16823  Да  Да   5,5…40  0,1/канал  1:200  16-TQFN; 16-TSSOP  
MAX16824  
Да  Да  Да  6,5…28  0,15/канал  1:5000  16-TSSOP  
MAX16825  Да  Да  Да  6,5…28  0,15/канал  1:5000  16-TSSOP  
MAX16828  Да  Да   6,5…40  0,2  1:100  6-TDFN  
MAX16835  Да  Да  
 
6,5…40  0,35  1:80  16-TQFN  
MAX16836  Да  Да   6,5…40  0,35  1:80  16-TQFN  
MAX16839  Да  Да   5…40  0,1  1:200  6-TDFN; 8-SO  

 

Большинство из них имеют диапазон входных напряжений 6,5…40 В. Максимальные значения выходных токов составляют 0,1…0,35 А. Каждая микросхема из таблицы 1 допускает импульсное регулирование выходного тока (ШИМ-димминг). Управлять яркостью светодиодов можно с помощью регулировки скважности импульсов, формируемых таймером

ICM7555. Рекомендуемая для этого производителем схема приведена на рис. 4. Параметры внешних компонентов для ШИМ-последовательности импульсов, формируемой таймером, приведены в соответствующей документации для ICM7555.

 

 

Рис. 4. Управление яркостью светодиодов с помощью таймера ICM7555

 

На рис.5 приведена рекомендуемая производителем схема для защиты мощных светодиодов от перегрева с помощью термистора NTC. Ток ограничения через светодиоды рассчитывается по формуле: ILED = [VSENSE — [R2/(R2+ R1)] V5]/R1, где V5- выходное напряжение 5В от встроенного стабилизатора напряжения. Такая несложная доработка схемы позволит исключить возможность выхода из строя дорогих светодиодов из-за недопустимо высокой температуры корпуса, ведь даже небольшое превышение максимально допустимой температуры резко сокращает их срок службы.

 

 

Рис. 5. Защита светодиодов от перегрева с помощью термистора

На рис. 6 показан способ увеличения выходного тока драйвера с помощью внешнего биполярного транзистора. Следует отметить, что в этом случае светодиоды подключаются между входом источника питания и коллектором биполярного транзистора, а это не всегда удобно.

 

 

Рис. 6. Увеличение тока драйвера с помощью внешнего биполярного транзистора

 

Схема для увеличения выходного тока, показанная на рис. 7, свободна от этого недостатка. Катод нижнего по схеме светодиода подключается непосредственно к общему проводу, что в большинстве случаев гораздо предпочтительнее предыдущего варианта, показанного на рис. 6, когда на катоде нижнего светодиода всегда присутствует ненулевой потенциал. Большинство микросхем линейных драйверов из таблицы 1 допускают рассмотренные варианты увеличения выходного тока. В качестве примера на рисунках 6 и 7 приведена микросхема

MAX16803.

 

 

Рис. 7. Параллельное включение двух драйверов для увеличения выходного тока

 

Импульсные драйверы светодиодов

Для портативных осветительных приборов очень важен высокий КПД преобразования светодиодных драйверов, поэтому в их схемах используются импульсные DC/DC-преобразователи с разными топологиями и схемными решениями, обеспечивающими стабилизацию выходного тока. Высокий КПД преобразования импульсных драйверов светодиодов позволяет увеличить время работы автономного источника питания.

Компания Maxim выпускает семейство импульсных драйверов для питания светодиодов постоянным током, имеющих возможность регулировки яркости при помощи аналогового или цифрового сигнала с ШИМ. Основные параметры и области применения этих драйверов приведены в таблице 2.

Таблица 2. Импульсные драйверы мощных светодиодов (Switch-mode HB LED drivers)

Наименова- ние Области применения Топология Uвх, В Iвых.макс, А Частота ШИМ-димминг (PWM-Dimming) Корпус
Автомобильные приложения Общее
применение
Подсветка дисплея
MAX16801   Да   Boost, flyback, SEPIC  10,8…24  10,0  262 кГц  1:3000  8-mMAX  
MAX16802   Да   Boost, buck, flyback, SEPIC  10,8…24  10,0  262 кГц  1:3000  8-mMAX  
MAX16807    Да  Boost, SEPIC + 8 linear*  8…26,5  0,05/канал  от 20 кГц до 10 МГц  1:5000  28-TSSOP-EP  
MAX16809    Да  Boost, SEPIC + 16 linear  8…26,5  0,05/канал  от 20 кГц до 10 МГц  1:5000  38-TQFN  
MAX16814  Да  Да  Да  Boost, SEPIC + 4 linear  4,75…40  0,15/канал  от 200 Гц до 2 МГц  1:5000  20-TQFN; 20-TSSOP  
MAX16819  Да  Да   Buck  4,5…28  3,0  от 20 кГц до 2 МГц  1:5000  6-TDFN  
MAX16820  Да  Да   Buck  4,5…28  3,0  от 20 кГц до 2 МГц  1:5000  6-TDFN  
MAX16821  Да  Да   Boost, buck, buck-boost, SEPIC  4,75…5,5; 7…28  30,0  от 125 кГц до 1,5 МГц  1:5000  28-TQFN  
MAX16822  Да  Да   Buck  6,5…65  0,35  от 20 кГц до 2 МГц  1:1000  8-SO  
MAX16826  Да  Да  Да  Boost, SEPIC + 4 linear  4,75…24  3,0  от 100 кГц до 1 МГц  1:2000  32-TQFN-EP  
MAX16832  Да  Да   Buck  6,5…65
 
0,7  от 20 кГц до 2 МГц  1:1000  8-SO-EP  
MAX16833  Да  Да   Boost, buck, buck-boost, SEPIC  5…65  2,0  от 100 кГц до 1 МГц  1:3000  16-TSSOP  
MAX16834  Да  Да  Да  Boost, buck, buck-boost, SEPIC  4,5…28  2,0  от 100 кГц до 1 МГц  1:3000  20-TQFN-EP  
MAX16838  Да  Да  Да  Boost, SEPIC + 2 linear  4,75…40  0,15/канал  от 200 Гц до 2 МГц  1:5000  20-TQFN; 20-TSSOP  
*linear — линейный стабилизатор  

Импульсные драйверы имеют широкие диапазоны входных напряжений. Например, у микросхемы MAX16833 входной диапазон напряжений от 5 до 65 В, у MAX16822 — от 6,5 до 65 В. Разработчику предлагаются на выбор драйверы с очень широким диапазоном частоты преобразования. Некоторые микросхемы позволяют задавать частоту преобразования от 20 кГц до 2 МГц (эти параметры приведены в таблице 2). Контроллеры светодиодных драйверов MAX16801 и MAX16802 позволяют разработать DC/DC-преобразователь с выходным стабилизированным током до 10 А. Драйверы MAX16807, MAX16809, MAX16838 и MAX16814 позволяют получить диапазон регулировки выходного тока с отношением 1:5000. Большинство импульсных светодиодных драйверов позволяют выбрать наиболее оптимальную топологию схемы для достижения максимальной эффективности работы схемы преобразования. Например, MAX16821, MAX16833 и MAX16834 дают возможности выбора топологии преобразователя из четырех возможных вариантов: boost, buck, buck-boost или SEPIC. Для облегчения правильного выбора светодиодного драйвера производитель приводит рекомендуемые области применения для каждого наименования. Миниатюрные корпуса и требуемые компактные внешние компоненты позволяют создать схему с малыми габаритами и широкими функциональными возможностями. В документации каждого драйвера приводятся рекомендуемые схемы включения для конкретного приложения, что существенно облегчает проектирование.

Несколько слов о способах регулировки яркости светодиодов с помощью импульсных драйверов. Наиболее популярны аналоговая и ШИМ-регулировка. Оба метода имеют свои преимущества и недостатки. Управление интенсивностью свечения с помощью ШИМ-регулирования позволяет значительно ослабить отклонение цветового оттенка светодиода, но требует дополнительного формирователя последовательности импульсов ШИМ. Регулировка яркости аналоговым методом основана на более простой схеме, но он может оказаться недопустимым при необходимости поддержания постоянной цветовой температуры светодиодов.

Аналоговая регулировка изменяет величину постоянного тока светодиода. Управление силой света светодиода обычно производится регулировкой переменного резистора или переменным уровнем управляющего напряжения, подаваемым на специально предназначенный для этого вход. Метод регулировки светового потока светодиода с помощью ШИМ заключается в периодическом включении и выключении тока через светодиод на короткие промежутки времени. Частота ШИМ обычно выбирается не менее 200 Гц для полного исключения эффекта мерцания и создания комфортного восприятия светового потока человеком. Интенсивность свечения светодиода при управлении с помощью ШИМ пропорциональна рабочему циклу импульсной последовательности.

Многие современные микросхемы импульсных драйверов светодиодов имеют специальный вход PWM DIM, на который можно подавать сигналы ШИМ разных частот и амплитуд, что существенно упрощает сопряжение драйвера со схемами внешней логики. Дополнительно для управления светодиодным драйвером могут использоваться вход разрешения выхода и другие логические функции.

Получение технической информации, заказ образцов, поставка — e-mail: [email protected]

Наши информационные каналы
Рубрики: статья
О компании Maxim Integrated

Компания Maxim Integrated является одним из ведущих разработчиков и производителей широкого спектра аналоговых и цифро-аналоговых интегральных систем. Компания была основана в 1983 году в США, в городе Саннивэйл (Sunnyvale), штат Калифорния, инженером Джеком Гиффордом (Jack Gifford) совместно с группой экспертов по созданию микроэлектронных компонентов. На данный момент штаб-квартира компании располагается в г. Сан-Хосе (San Jose) (США, Калифорния), производственные мощности (7 заводов) и …читать далее

www.compel.ru

Линейные драйверы светодиодов от производителя Infineon

Линейные драйверы светодиодов от производителя Infineon

Стоимость и простота применения могут иметь определяющее значение при выборе светодиодного источника питания. Этим двум критериям соответствуют микросхемы линейных драйверов BCR320UE6327 и BCR420UE6327 производства компании Infineon. Кроме простоты и стоимости, линейные преобразователи обладают высокой устойчивостью к внешним электромагнитным помехам и обеспечивают необходимый уровень электромагнитной совместимости с другими устройствами.

Микросхемы BCR320UE6327 и BCR420UE6327 выполнены в компактных корпусах SC74 обеспечивающих рассеиваемую мощность до 1Вт.

 

Основные особенности микросхем BCR320UE6327 и BCR420UE6327:

  • Предустановленный выходной ток 10мА;
  • Максимальный выходной ток на светодиоды до 250мА для версии BCR320 и до 150мА для версии BCR420;
  • Возможность параллельного каскадирования микросхем для увеличения выходного тока;
  • Напряжение питания до 25В для версии BCR320 и 40В для версии BCR420;
  • Отрицательный температурный коэффициент -0.2 %/K уменьшает выходной ток при повышении температуры;
  • Возможность регулирования яркости светодиодов с помощью ШИМ сигнала частотой до 10кГц для версий BCR321 и BCR421.

Преимуществами линейных драйверов светодиодов данных серий  перед линейными регуляторами других производителей являются:

  • возможность диммирования светодиодов с помощью внешнего ШИМ сигнала
  • наличие защиты от перегрева
  • соответствие автомобильному сертификату AEC Q101, что позволяет применять микросхемы для построения систем внутреннего и наружного освещения в автомобилях.  
Типовая схема включения микросхем BCR320UE6327 и BCR420UE6327 Схема включения микросхем BCR321UE6327 и BCR421UE6327 с использованием внешнего ШИМ сигнала для регулировки яркости светодиодов

По умолчанию выходной ток задан на уровне 10мА встроенным токоограничивающим резистором, подключая между выводами 6 и 4 внешний резистор можно выставить нужный выходной ток. Вычислить номинал внешнего резистора Rext для установки нужного выходного тока можно используя график ниже: 

Микросхемы могут найти широкое применение для построения систем освещения в таких сферах как:

  • Архитектурное освещение;
  • Декоративное и рекламное освещение;
  • Подсветка в автомобилях;
  • Подсветка аварийных и предупреждающих знаков.

Продукцию компании  Вы можете заказать, сделав заявку:

www.promelec.ru

Линейный светодиодный драйвер AMC7135, Вторая жизнь фонаря, перевод питания на литий.

Всем Муськовчанам привет!!! В конце февраля, наш любимый семейный фонарь, на случай ядерной войны отключения электричества, при попытке зарядки, отдал Электронному Богу, свою электронную душу (выпустив белый дым). Лампа прослужила верой и правдой нам больше 5 лет, и можно было бы отправить её в помойное ведро на заслуженный покой… Но… Эта лампа была куплена в каком-то супермаркете на о. Бали, и была дорога как память… Потому я решил дать ей второй шанс, заодно немного улучшить конструкцию (если конечно это будет возможно)…
Много фото (трафик)…

Для начала нужно было разобрать фонарь и поглядеть что там такое случилось…
Разборка показала, что там практически «никакая» схемотехника. Источник питания бестрансформаторный. В общем, все в лучших традициях Китайского производства. Обугленные резисторы и взорванный электролитический конденсатор:

Взорванный электролитический конденсатор подтвердил догадку, что какой-то светодиод выйдя из строя, разомкнул цепь бестрансформаторного питания, и на светодиодах оказалось сетевое напряжение, о чем и рассказал нам разнесенный в клочья электролит, поскольку он не был рассчитан на сетевое напряжение. Классическая неисправность бестрансформаторного блока питания. Я начал проверять все светодиоды по очереди… Все 20 светодиодов вышли из стоя… А так же приказал долго жить кислотный аккумулятор… Я дал на него питание, зарядного тока нет.

В общем легче выкинуть, чем отремонтировать… Но вспоминая веселые деньки на пляжах о. Бали, было решено отремонтировать фонарь, точнее использовать корпус фонаря, начинить его новыми деталями…
Ранее на Али были куплены светодиоды, такие же какие стояли в фонаре. Были куплены по случаю, и вот их звездный час настал… Я так же поискал подобный аккумулятор на Али, нашел, но цена была дороже, чем купить новый фонарь. Потому было решено перевести питание на литий.

Перепаиваем все светодиоды, все 20 штук… Даем питание с Лабораторного источника, и видим, что суммарное потребление тока составляет 400мА. Но это предел по даташиту на диоды, потому я планирую питать их немного меньшим током… Тут начался поиск драйвера. Сначала обошел все магазины в Оффлайне… Ничего… вообще ничего… В Казахстане не густо с радиомагазинами, даже в таком крупном городе как Алма-Ате.
Поиск привел меня на Муську, где наш Уважаемый Гуру kirich, давал обзор на линейные драйверы на микросхеме AMC7135. Решил их заказать, ибо каких-либо других вариантов и не было…
Заказ был сделан 26 февраля 2017 года:

Микросхемы пришли в Алма-Ату 6 апреля, безтрековой посылкой. Вот такая милая «козявка» с тремя ножками…

Для начала я выпилил из 2-х стороннего фольгированного текстолита плату размером с штатную и высверлил в ней крепежные отверстия (как всегда немного не точно, потому пришлось подгонять дырки)

Почему именно двухсторонний, что бы можно было использовать медную фольгу как радиатор для микросхемы драйвера.
Далее при помощи замечательного китайского режущего инструмента была прорезана фольга в нужных местах…

Фольга была залужена и на нее была припаяна микросхема драйвера.
Схема использовалась из Даташит на микросхему:

Вот еще картинки из интернета, показывающие как можно использовать микросхему- драйвер:

Помня рассказ kirich, о том что микросхема не переносит нагрева, паял низкотемпературным сплавом Розе. Получилось вот так…

Ставим на примерку плату на штатное место…
С двух сторон подпаиваем конденсаторы 1 мкФ 50В, которые настоятельно были рекомендованы в Даташите.

Подключаем наскоро светодиоды и даем питание с ЛабБП, проверяем ток светодиодов:

Практически ток составляет 350мА, что мне было и нужно… Отключаем амперметр, и на обратной стороне на 2-х сторонний скотч прикрепляем плату зарядки и плату защиты аккумулятора…

Я заказал плату зарядки литиевого АКБ и защитой, но они по прежнему еще в дороге, потому была использована самодельная плата защиты, полностью соответствующая по схеме зарядному устройству с защитой… Это вот такая плата.

Приклеиваем держатель аккумулятора 18650 при помощи клеевого пистолета…


Собираем фонарь… На боку некрасивая дырка, ранее тут был штекер питания 220В… Вырезаем кусочек черного пластика, прорезаем в нем прямоугольную дырку для зарядного кабеля и вклеиваем его аккуратно в отверстие… Круглое отверстие просверлено, что было видно светодиоды зарядной платы:

Получилось практически незаметно… И вот включаем фонарь…

Epic Win!!! Все работает… Фонарь спасен и надеюсь еще долго будет радовать нас при проблемах с электричеством…
Вот такой небольшой обзор… Всем добра!!!

mysku.ru

применение линейных драйверов светодиодов NUD4001/4011

Cветодиоды — низковольтные полупроводниковые приборы. Для их питания, обеспечивающего длительный срок службы, необходимо стабилизировать именно протекающий через них ток, а не напряжение. Дело в том, что незначительные изменения прямого напряжения на светодиоде вызывают резкие скачки тока через светодиод. Кроме того, падения напряжения на светодиодах разных цветов довольно сильно отличаются. Например, прямое падение напряжения на светодиоде красного цвета примерно в 1,5 раза меньше, чем на синем, белом или зеленом светодиодах. Этот фактор необходимо учитывать при последовательном включении светодиодов, так как при одинаковом количестве последовательно включенных светодиодов разных цветов суммарное падение напряжения может отличаться на 50%.

Для питания светодиодов стабилизированным током выпускаются импульсные и линейные драйверы светодиодов, которые имеют свои преимущества и недостатки. В некоторых случаях целесообразно использовать линейные светодиодные драйверы из-за простоты включения и расчета, а также низкой цены и малого количества внешних компонентов. Линейные драйверы компании ON Semiconductor NUD4001 и NUD4011 предназначены для замены решений, выполненных на дискретных компонентах. Микросхема NUD4001 предназначена для низковольтных напряжений питания до 30 В при выходном токе до 500 мА. Драйвер NUD4011 применяется для проектирования высоковольтных драйверов с питанием до 200 В при выходном токе до 70 мА. Драйверы NUD4001 и NUD4011 выпускаются в корпусе SO8 для автомобильного диапазона рабочих температур -40…125°С.

Простейшая схема для питания светодиодов от мостового выпрямителя без интегрального драйвера приведена на рис. 1.

 

 

Рис. 1. Питание светодиодов от мостового выпрямителя

Недостатки этой схемы очевидны. Резистор R1 только ограничивает ток. О его стабилизации не может быть и речи. Колебания напряжения сети будут вызывать изменение напряжения на конденсаторе С1, что приведет к изменениям тока через светодиодную цепь и интенсивности свечения светодиодов. Кроме того, расчеты показывают, что резистор R1 должен иметь большую мощность (для рассматриваемой схемы 3 Вт). Добавление линейного стабилизатора напряжения позволяет повысить стабильность выходного напряжения (но не стабилизацию тока) через светодиоды. Однако и эта схема не сможет компенсировать изменение падения напряжения на светодиодах в широком диапазоне рабочих температур. Кроме того, получается неоправданное усложнение схемы.

Более простое и эффективное решение драйвера светодиодов — применение специализированных микросхем NUD4001 и NUD4011 компании ON Semiconductor, обеспечивающих стабилизированный ток на выходе. Типовая схема включения светодиодного драйвера NUD4001 приведена на рис. 2. По сути дела, NUD4001 и NUD4011 — это управляемые генераторы (стабилизаторы) тока, выходной ток которых задается внешним резистором. Стабилизация тока обеспечивается во всем диапазоне рабочих температур (40…125°С) и во всем диапазоне допустимых входных напряжений. Основное назначение драйвера NUD4001 — генератор тока для автомобильных светодиодных ламп (габаритные огни, указатели поворотов, стоп-сигналы, освещение салона). Входные цепи питания микросхемы NUD4001 выдерживают броски напряжения до 60 В. Микросхема светодиодного драйвера NUD4001 может также использоваться в качестве источника тока в недорогих зарядных устройствах для мобильных приложений.

Расчет параметров схемы на рис. 2 отличается простотой и состоит из следующих шагов:

 

 

Рис. 2. Схема включения NUD4001 для питания трех светодиодов от 12 В

1. Выбор тока через светодиод Iсветод. = Iвых, исходя из документации производителя светодиодов. Для примера выберем ток 350 мА.

2. Расчет резистора Rвнеш. (в качестве примера выбрана температура перехода Tj= 25°С):

Rвнеш = Vsense/Iсветод. = 0,7 (Tj =25°C)/0,350 А = 2,0 Ом. Значение Vsense определяется из графика на рис. 3. Эта зависимость и все остальные, приведенные в статье, взяты из документации производителя.

 

 

Рис. 3. Зависимость напряжения Vsense от температуры перехода

3. Выбор напряжения питания (оно же равно Vвх). В качестве примера выбрано напряжение 12 В.

4. Определение падения напряжения на трех светодиодах на основе параметров, взятых из документации производителя. Для примера будем считать, что падение напряжения на одном светодиоде составляет 3,5 В при токе 350 мА. Тогда падение на трех светодиодах будет 3,5 В х 3 = 10,5 В.

5. Расчет падения напряжения Vdrop на выходном ключе драйвера NUD4001:

Vdrop = Vвх — Vsense — Vсветод. х N = 12 В — 0,7 В (при Tj = 25°C) — 10,5 В = 0,8 В, где N — количество последовательно включенных светодиодов.

6. Расчет рассеиваемой мощности на микросхеме драйвера NUD4001:

Pdriver = Vdrop x Iвых = 0,8 В х 0,350 А = 0,280 Вт

7. Расчет мощности управления Руправл., потребляемой самой микросхемой при отсутствии нагрузки. Этот параметр определяется с помощью графика на рис. 4. Для напряжения питания 12 В собственная мощность потребления составляет 0,055 Вт.

 

 

Рис. 4. Зависимость мощности потребления NUD4001 от напряжения питания при отсутствии нагрузки

7. Расчет полной мощности Рполн., рассеиваемой на микросхеме NUD4001:

Рполн. = Руправл. + Pdriver = 0,055 Вт + 0,280 Вт = 0,335 Вт.

8. Сравнение рассчитанной полной мощности с максимально допустимой, приведенной на рис. 5. Полученная в результате расчета мощность 0,335 Вт (при 25°С) не превышает максимально допустимую. Если при определенной температуре окружающей среды рассчитанная рассеиваемая мощность превышает допустимую, то необходимо уменьшать выходной ток драйвера или включать микросхемы параллельно. В некоторых случаях изменение количества последовательно включенных светодиодов позволяет достичь меньшего падения напряжения Vdrop на микросхеме NUD4001. Изменение напряжения питания также позволяет снизить падение напряжения на выходном ключе светодиодного драйвера NUD4001, уменьшив при этом рассеиваемую мощность на микросхеме.

 

 

Рис. 5. Зависимость допустимой полной рассеиваемой мощности NUD4001 от температуры

Интересной особенностью драйвера NUD4001 является наличие вывода Boost, который дает возможность подключения внешнего силового транзистора для дополнительного увеличения суммарного выходного тока нагрузки. Схема с внешним транзистором приведена на рис. 6. Подробный расчет параметров этой схемы приведен в статье по применению AND8198/D «Using the NUD4001 to Drive High Current LEDs», которую легко найти на сайте производителя http://www.onsemi.com/.

 

 

Рис. 6. Увеличение выходного тока с помощью внешнего транзистора

Другой способ увеличения выходного тока — параллельное включение драйверов NUD4001. Этот способ позволяет снизить рассеиваемую мощность на каждой микросхеме, что особенно актуально в автомобильных приложениях, где схема драйвера работает при повышенных температурах. Схема параллельного включения для питания светодиода током 550 мА при напряжении питания 13,5 В (аккумулятор автомобиля) приведена на рис. 7.

 

 

Рис. 7. Параллельное включение NUD4001 для получения выходного тока 550 мА

Эффективную регулировку яркости светодиодов можно осуществить с помощью ШИМ-регулирования, коммутируя подключения вывода GND-микросхемы драйвера к общему проводу. Рекомендуемая схема с импульсным регулированием интенсивности свечения светодиодов приведена на рис. 8.

 

 

Рис. 8. Управление драйвером NUD4001 с помощью ШИМ для регулировки яркости светодиодов

Для быстрого ознакомления с работой драйвера NUD4001 компания ON Semiconductor выпускает демонстрационную плату NUD4001DEVB. Плата позволяет провести эксперименты с регулировкой интенсивности свечения светодиодов при токе до 350 мА и измерить параметры схемы при разных режимах работы. Подробное описание и формулы для расчета схемы драйвера приведены в статье по применению AND8234/D «NUD4001 Dimming Ability Demonstration Board».

Более подробную информацию по рассмотренным в этой статье микросхемам драйверов светодиодов и демонстрационных плат можно найти на сайте производителя по адресу http://www.onsemi.com/.

Получение технической информации, заказ образцов, поставка — e-mail: [email protected]

Наши информационные каналы
Рубрики: статья
О компании

…читать далее

www.compel.ru

LED. Линейный драйвер CCR (NSI45020AT1G) источник постоянного тока 20мА

Решился на замену салонного освещения в TLC150. НО, обычные проверенные решения типа LM317 и одноваттных эмиттеров отвалились сразу при виде снятого плафона — место есть лишь под smd-диоды типа 5730 / 5630, а токовый драйвер и вовсе не приткнуть.

На просторах интернетов нашёл я следующую вещь. Герой обзора — это двухвыводной линейный стабилизатор тока с номиналом 20 мА. Он включается в цепь последовательно и поддерживает в ней ток 20 мА, при этом часть напряжения падает на нагрузке а часть на самом регуляторе (макс 45В). Если надо большие токи то можно добиваться токов кратных номинальному параллельно последовательным включением (n стабилизаторов соединяются параллельно где I=20*N далее эта группа включается последовательно в цепь).

Вольтамперная характеристика.

Вот мануал на это чудо если кому надо для ознакомления.
www.onsemi.ru.com/pub_link/Collateral/NSI45020A-D.PDF

Размеры стабилизатора (1,6 x 2,69) mm (1,6 x 3,68 если учитывать ножки) собственно размеры близки к SMD резисторам, а последовательное включение позволяет его использовать вместо токоограничивающего резистора. Ток в 20ма подходит для 5050 и им подобным типам светодиодов.

Эта кроха несет на своем борту большое количество вкусняшек. Она специально разработана для работы в автомобилях: имеет защиту по всплескам напряжения в бортовой сети; диапазон рабочих температур от -55 до +150 градусов; защита от переполюсовки; возможность изменять яркость с помощью шим; возможность параллельного включения для повышения выходного тока; при повышении температуры регулятора, выходной ток будет снижаться, что опять таки нам в плюс; падение напряжения 0,5 В; напряжение включения 7,5 В.

Напряжение питания до 45 В, на выходе стабильные 20 мА. Включается последовательно с цепочкой светодиодов, единственное условие: сумма падений напряжения на светодиодах должна быть меньше входного напряжения минимум на 0,7 В. Используя светодиоды на 20 мА включаем последовательно с гирляндой. Если необходим больший ток, к примеру 40 мА, смело включаем параллельно 2 регулятора.

Менять яркость светодиодов с помощью шим, да пожалуйста). Максимальная частота работы регулятора 10 МГц. Производитель рекомендует использовать частоту шим от 100 Гц до 100 КГц. Ниже 100 Гц возможно мерцание светодиода, заметное человеческому глазу.

Есть один небольшой недостаток в этих крохах с набором вкусняшек…
А имено то, что драйвер линейный и поэтому к нему привязвны некие рамки!
Как вы уже описали — это напряжение включения и падение 0,5-0,7 вольта.
Так вот, для меньшего нагрева самой NSI, нужно как можно меньше оставить ей паразитной напруги (Не менее 0,7 и не более 1-1,5 вольта). Поэтому если появляется желание поставить даже пару светодиодов, желательно поставить регулятор напряжения, до этой мелкой микрушки. Ну а с одним светодиодом у этих стабилизаторов возникают проблемы! Падение на одном светике всего 2,8-3,4 вольта и даже если выставить всего 5-6 вольт, то паразитной напруги останется ещё половина! Которая благополучно уйдёт в тепло.

Диоды будем использовать 5730 теплого желтого цвета 3000К. Можно было бы и обычные 5050, но один вывод припаивать удобнее, нежели три.

Световой поток                    45-50 Люмен 
Мощность                          0,5 Вт 
Рабочая температура, градусов     -40 до + 80 
Номинальный ток, мА               150 
Напряжение питания, Вольт         3,1 – 3,3 
Длина и ширина, мм                5,7 x 3 
Угол свечения, градусов           120

Так как диоды у меня «дешевый китай», максимальный ток ограничим 40мА, для чего установим два NSI45020AT1G параллельно. Падение напряжения на диоде усредненно 3.3В, поэтому сгруппируем их по три последовательно.

Полагаю, в таком режиме больше 15лм с диода не снять. Штатная лампа центрального плафона имеет мощность 5Вт, штурманских 5Вт. Таким образом, необходимо расположить на центральном плафоне не менее 20шт. 5730, а на штурманских 12шт.

Картинки — линк, линк, линк, еще  и еще немного

Платку чертим с полигонами для охлаждения диодов, они тепло пузом отдают.

 


А яркость то откуда больше, если ток ограничен 20мА? Разве что параллельно впаивать по несколько драйверов

Плотная компоновка в данной конструкции это плюс. При нагреве светодиодов будут нагреваться и близко расположенные к ним CCR. Посмотрел даташит, эти CCR имеют отрицательный температурный коэффициент тока. То есть CCR будет снижать ток через светодиоды при их нагреве, увеличивая этим надёжность и срок службы (чего не могут делать отдельно стоящие драйверы мощных светодиодов).

NSI45020AT1G это линейный стабилизатор об этом сказано в обзоре
45 это максимум падения напряжения на стабилизаторе (входное = падение на стабилизаторе + падение на нагрузке)

необходимо рассчитывать для напряжения в 15 Вольт, заведённый генератор выдаёт на исправном авто 14,5 вольт, + запас по прочности.

Input Voltage: DC 12-14V

Vak_max это напряжение которое может максимум упасть на регуляторе
грубо говоря при КЗ почти всё входящее напряжение упадёт на регуляторе

Если у нас монго светодиодов включенных последовательно то на каждом в зависимости от типа упадёт определённое напряжение (примерно 3-3,2 для белых) и того берём ~97 белых светодиодов на них будет падать (291-310) а на стабилизаторе будет падать остальное напряжение (310-Vдиодов)

Vak_max это рабочий диапазоном регулирования напряжения для достижения номинального тока.

 

1 свд через него к 12+ можно подключать или только группами по 2-3 свд?

Можно.
Просто представляйте себе эту штуку как «волшебный резистор» он меняет своё сопротивление так чтобы в цепи тёк постоянный ток 20мА.

При регулировании часть напряжения падает на нагрузке (причём так что бы ток в цепи был 20мА), а остальная часть на CCR.Максимально допустимое падение напряжения на CCR 45V т.е.
1)Если взять блок питания на 40 вольт и только включить CCR то всё напряжение упадёт но ней она уцелеет (ну должна судя по мануалу) и ток будет 20мА.
2)Если поднять напряжение до 50 она сгорит(т.к. она единственная нагрузка).
3)Если в схему №2 добавить 3 белых светодиода с падением напряжения 3,2 то CCR выживет т.к. 50-(3*3,2)=40,4 (40,4<45)

Замечания
Регулировать ток эта штука начинает когда на ней падает 2-3 вольта.(если недостаточно напряжения и на CCR слишком малое падение напряжение то ток в цепи будет меньше 20мА)
Не рекомендуется доводить падение напряжения на CCR до максимальных значений, это негативно сказывается на долговечность и надёжность, кроме того это лишний нагрев. (45В*0,02А=0,9Вт)
При применении в авто правильно рассчитывайте цепи, напряжение в авто 14В.

 

 

По мотивам — линк, линк, линк

blog.labrocat.ru

Схема драйвера для светодиодов 220

Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Параметры драйверов

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт – мощность драйвера;

Р(св), Вт – мощность одного светодиода;

N – количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

Какую микросхему выбрать?

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Регулирование яркости.
  2. Напряжение питания – 6-30 В.
  3. Выходной ток – 1,2 А.
  4. Допустимая погрешность при стабилизации тока – не более 5%.
  5. Защита от отключения нагрузки.
  6. Выводы для диммирования.
  7. КПД – 97%.

Обозначение выводов микросхемы:

  1. SW – подключение выходного коммутатора.
  2. GND – отрицательный вывод источников питания и сигнала.
  3. DIM – регулятор яркости.
  4. CSN – датчик входного тока.
  5. VIN – положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

fb.ru

Драйвер светодиодов линейный – что это такое, как выбрать и подключить

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *