Ветрогенератор что такое: Ветрогенераторы: принцип действия, типы, применение, эффективность работы — Альтер Эйр

Содержание

Ветрогенераторы. Устройство и виды. Работа и применение

Электричество сегодня считается чем-то обыденным, ведь оно есть в каждом доме. И никто не задумывается, откуда оно берется. Электричество в основной массе вырабатывается электростанциями, работающими на нефти, природном газе, ядерном топливе или угле. Эти традиционные источники представляют определенную опасность для окружающей среды, вследствие чего все большее внимание уделяется альтернативным видам энергии. К последним можно отнести ветрогенераторы, которым для выработки электричества нужен лишь ветер.

Устройство

Конструктивно ветрогенераторы в большинстве случаев предполагают наличие следующих элементов:

  • Лопасти турбины (пропеллер).
  • Турбина (вращающаяся часть).
  • Электрогенератор.
  • Ось электрогенератора.
  • Инвертор, преобразующий переменный ток в постоянный, для возможности зарядки батареи.
  • Механизм вращения лопастей.
  • Механизм вращения турбины.
  • Аккумулятор.
  • Мачта.
  • Контроллер вращения(анемометр).
  • Демпфер.
  • Датчик ветра и анемоскоп.
  • Хвостовик анемоскопа.
  • Гондола и ряд других элементов.

В зависимости от вида ветрогенератора конструкция и входящие в него элементы могут разниться. К примеру, промышленные устройства также предусматривают наличие системы молниезащиты, силового шкафа, поворотного механизма, надежного фундамента, системы пожаротушения, системы изменения угла атаки лопасти, телекоммуникационной системы для передачи информации о работе ветрогенератора и так далее.

Принцип действия

Ветрогенератор представляет устройство, преобразующее энергии ветра в электрическую энергию. Прародителями современных видов ветрогенераторов являются ветряные мельницы, которые применялись для получения муки из зерен. И принцип их работы изменился ненамного: лопасти вращают вал, который передает необходимую энергию на другие элементы.

  • Ветер вращает лопасти, передавая крутящий момент через редуктор на вал генератора.
  • При вращении ротора образуется трехфазный переменный ток.
  • Полученный ток направляется на аккумуляторную батарею через контроллер. Аккумуляторы применяют для создания стабильности работы ветрогенератора. Генератор заряжает аккумуляторы при наличии ветра. При его отсутствии всегда можно взять энергию с аккумулятора, чтобы потребитель не прекращал получать электричество.
  • С целью защиты от ураганов в ветрогенераторах применяется система с уводом ветроколеса от ветра при помощи складывания хвоста, либо торможения ветроколеса электротормозом.
  • Для зарядки аккумуляторов ставится контроллер между ветряком и АКБ. Он отслеживает зарядку АКБ, чтобы не испортить аккумуляторы. При необходимости он может сбрасывать лишнюю энергию на определенный балласт, к примеру, большой резистор или тэны для отопления.
  • В аккумуляторах имеется лишь постоянное низкое напряжение рядностью 12/24/48 вольт. Однако потребителю нужно напряжение в 220 вольт, именно поэтому ставится инвертор. Это устройство преобразует постоянное напряжение в переменное, создавая напряжение в 220 вольт. Естественно, что можно обойтись и без инвентора, но придется использовать электрические приборы, специально рассчитанные на низкое напряжение.
  • Преобразованный ток направляется потребителю, чтобы питать отопительные батареи, освещение, телевизор и иные устройства.

В промышленных ветряках могут применяться и другие элементы, которые обеспечивают автономную работу устройства.

Типы и виды ветрогенераторов

Классифицировать ветряки можно по материалам, количеству лопастей, шагу винта и оси вращения.

Выделяют два основных типа ветрогенераторов по оси вращения:
  1. С горизонтальной осью круглого вращения, то есть крыльчатые.
  2. С вертикальной осью вращения, то есть «лопастные» ортогональные, «карусельные».

Горизонтальные классические ветрогенераторы имеют пропеллер (в большинстве случаев трехлопастной), а вертикальные ветряки обладают ветроколесом, которое вращается вертикально.

По количеству лопастей ветряки могут быть:
  • Трехлопастные и двухлопастные.
  • Многолопастные.

Вращение многолопастных ветряков начинается при слабом ветре, тогда как для двухлопастных и трехлопастных устройств требуется более сильный ветер. Однако каждая
дополнительная лопасть создает дополнительное
сопротивление ветроколеса, вследствие чего достигнуть рабочих оборотов генератора становится сложнее.

По материалам лопастей ветряки могут быть:
  • Парусные генераторы.
  • Жесткие лопасти ветрогенератора.

Парусные лопасти дешевле и проще в изготовлении, однако, когда необходима стабильная и надежная работа для автономного электроснабжения они не подойдут.

По шагу винта:
  • Изменяемый шаг винта.
  • Фиксированный шаг винта.
Изменяемый шаг винта дает возможность повысить диапазон эффективных скоростей работы. В то же время данный механизм неизбежно:
  • Усложняет конструкции лопасти.
  • Снижает общую надежность ветрогенератора.
  • Утяжеляет ветроколесо и требует дополнительного усиления конструкции.
Применение
Устройства могут использоваться в различных местах. В большинстве случаев в открытые пространства, где большой потенциал ветров:
  • Горы.
  • Мелководье.
  • Острова.
  • Поля.

В то же время ветрогенераторы современных конструкций дают возможность задействовать энергию даже слабых ветров – от 4 м/с. Благодаря им можно решать задачи электроснабжения и энергосбережения объектов любой мощности.

  • Стационарные ветряные электростанции в виде альтернативных источников энергии способны полностью обеспечить электрической энергией небольшой производственный объект или жилой дом. В периоды отсутствия ветра необходимый запас электроэнергии будет выбираться из аккумуляторных батарей. Они отлично могут сочетаться с фотоэлектрическими батареями, газовым или дизельным генератором.
  • Ветрогенераторы могут использоваться и для экономии при наличии центральной электросети.
  • Ветроустановки средней и малой мощности часто используются владельцами фермерских хозяйств и домов, удаленных от централизованных электросетей, в качестве автономного источника.
Достоинства и недостатки
К преимуществам можно отнести:
  • Энергия ветра является возобновляемой энергией. Ветер создается бесплатно и постоянно, без ущерба окружающей среде. Энергия ветра доступна в любом месте на планете.
  • Энергия ветра является достаточно дешевой.
  • Ветряные турбины находятся на мачтах, им требуется минимум места. Благодаря этому их можно устанавливать совместно с иными объектами и строениями.
  • Ветрогенераторы в процессе эксплуатации не производят вредных выбросов.
  • Энергия ветра в особенности требуется в удаленных местах, куда затруднена доставка электричества иными привычными способами.
К недостаткам можно отнести:
  • Сила ветра очень переменчива и непредсказуема, вследствие чего требуется дополнительный буфер для накапливания электроэнергии, либо дублирования источника.
  • Высокая начальная стоимость создания и установки ветрогенераторов.
  • Ветряные турбины создают шум, который сравним с шумом автомобиля, перемещающегося со скоростью 70 км/ч. Это отпугивает животных и создает определенный дискомфорт для людей.
  • Вращающиеся лопасти представляют потенциальную опасность для птиц.
Похожие темы:

как сталь помогает альтернативной энергетике

Мир переходит на чистую энергетику. Энергия ветра сейчас считается одной из самых дешевых по способу производства электроэнергии. По данным Глобального совета по ветроэнергетике (Global Wind Energy Council (GWEC), в прошлом году мощности ветряных электростанций впервые превысили объемы ископаемого топлива на многих развитых и развивающихся рынках.

Последние пять лет ветряная энергетика растет примерно на 50 гигаватт в год. Сегодня все ветроэлектростанции планеты генерируют 591 гигаватт. GWEC ожидает, что еще через пять лет в мире станет больше на 300 гигаватт новых мощностей. 

Топ стран-лидеров в ветроэнергетике, 2018 год, GWEC, гигаватты 

Номер два в Европе и Украине 

Ветроэнергетика – вторая по объему мощностей отрасль энергетики в Европе. Ветропарки Европейского союза вырабатывают около 180 гигаватт энергии. Это почти половина от всей европейской энергетики. По прогнозам ассоциации Wind Europe, в этом году ветроэнергетика может перерасти газовую промышленность. В 2018 году в Европе введены в эксплуатацию установки с ветрогенераторамы мощностью почти 12 гигаватт. Из всех энергетических объектов, построенных в прошлом году, на долю возобновляемых источников энергии приходится 95%. А вот газ, нефть и уголь теряют свои позиции: новые установки по добыче газа и угля в ЕС достигли рекордно низкого уровня. 

Каждый год в зеленую энергетику в Европе вкладывают миллиарды евро. 2018 год стал рекордным по финансированию проектов ветроэнергетики: инвестиции составили почти 27 млрд евро. Самые крупные инвесторы – Великобритания и Швеция. Украина с 1,2 млрд евро входит в десятку по объему инвестиций в зеленую энергетику.    

Топ стран-лидеров по инвестициям в ветроэнергетику в 2018 году, Wind Europe, млрд евро

В первой половине этого года в Европе построили  ветрогенераторы мощностью почти 5 гигаватт. Украина вошла в пятерку самых продвинутых стран.

Топ стран-лидеров по количеству установок ветроэлектростанций, 1-е полугодие 2019 г., Wind Europe, мегаватты

Среди альтернативных источников энергии в Украине ветер пока уступает солнцу. В 2018 году было построено 68 ветропарков общей мощностью 533 мегаватта. Это 22 ветрогенератора, мощность каждого из которых – около 3 мегаватт. На конец июня этого года общие мощности украинских ветроэлектростанций достигли почти 777 мегаватт. 

Мегаконструкции из металла

Ветроэлектростанция состоит из нескольких ветрогенераторов, объединенных в одну сеть. Самые большие ветропарки расположены в Китае, Индии и Великобритании. К примеру, в китайской провинции Ганьсу работает целый комплекс ветроэлектростанций мощностью почти 8 гигаватт, который может потягаться с крупнейшими атомными и гидроэлектростанциями. 

Ветрогенератор – установка, которая превращает энергию ветра в электрическую. По данным Wind Europe, в среднем мощность одного ветрогенератора колеблется от 2 до 3,6 мегаватт.
Самая мощная турбина ветрогенератора в мире установлена у берегов Шотландии. Диаметр лопастей ветряка составляет 164 метра – больше, чем размах крыльев любого самолета, высота – 191 метр. Мощность установки – 8,8 мегаватт. Ветряной  энергии от одного оборота лопастей ветрогенератора хватит для того, чтобы освещать одну квартиру целый день.

Конструкция ветряка весит сотни тонн, его мачта выполняется из толстолистового проката, а фундамент – из арматуры крупных диаметров – 20-32 мм. На один фундамент может уйти от 60 до 130 тонн арматуры. Стальной сплав делает установку прочной и устойчивой к нагрузкам. 

Производителям башен и гондол ветроэлектрических установок Метинвест поставляет прокат шириной до 3300 мм и толщиной до 200 мм, произведенный по ведущим мировым стандартам на украинских и европейских заводах компании. Практически весь материал ветрогенератора – это лист конструкционных марок стали с преобладанием класса прочности S355. Больше половины проката проходит ультразвуковой контроль качества, чтобы гарантировать требуемую сплошность материала для дальнейшей сборки. В 2018 году Метинвест поставил 68 тыс. тонн горячекатаного листа для производства башен ветрогенераторов. Большую часть продукции выпустил Trametal, итальянский завод группы.

Метинвест участвует в ветроэнергетических проектах по всему миру. Италия, Испания, Португалия, Германия, Израиль, Турция, Иордания, Египет, США, Украина – это далеко не полный перечень стран, в которых построены или строятся ветропарки из украинской стали. 

Ветропарк в Барвице, Польша

Среди клиентов Метинвеста – мировой лидер в отрасли ветроэнергетики, компания Siemens Gamesa. Для строительства ветроэлектростанции в Польше комбинат «Азовсталь» поставил около 3 тысяч тонн толстого листа. Из него субподрядчик проекта, польская компания GSG Towers изготовит ветряные башни.

В этом году специалисты Siemens провели аудит на «Азовстали» и сертифицировали производство комбината. Это значит, что Метинвест стал украинским партнером Siemens и сможет поставлять продукцию и для других проектов компании. 

Ветряная электростанция  расположится в Барвице, что на северо-западе Польши. Проект включает строительство 14 ветряных турбин мощностью 3 мегаватта каждая. Общая мощность станции – 42 мегаватта. Строительство началось в марте этого года, а ввод ветропарка в эксплуатацию ожидается в феврале 2020 года. Ветроэлектростанция будет генерировать около 112 млн КВтч в год. Этого достаточно, чтобы обеспечить электричеством около 27 тысяч домохозяйств.

Ветропарк на острове Петалас, Греция

В западной Греции продолжается строительство ветроэлектростанции из 24 установок мощностью по 2 мегаватта каждая. Ветропарком будет управлять компания Protergia – энергетическое подразделение Mytilineos, крупнейшего производителя электроэнергии в Греции. 

Ветряные турбины в этом проекте изготавливает и монтирует один из крупнейших в мире производителей – датская компания Vestas, которой Метинвест поставил 0,5 тыс. тонн арматуры.

Ветропарки в Украине

На внутреннем рынке  ветрогенераторы украинского производства выпускает Краматорский завод тяжелого станкостроения, который совместно с компанией «Фурлендер Виндтехнолоджи» предоставляет полный цикл по производству ветрогенераторов.

Для изготовления ветроэнергетических установок в Украине за последний год Метинвест поставил более 2,5 тыс. тонн горячекатаного толстолистового проката производства «Азовстали». 

Ветроэлектростанция вблизи поселка Ясногорка, что возле Славянска, будет состоять из 15 установок. Один ветряк мощностью 4,5 мегаватт сможет обеспечивать электроэнергией около 3,5 тысяч семей. Строительство ветряного парка началось осенью 2018 года. На первом этапе планируется установить три ветрогенератора. 

Ветропарк «Очаковский» включает две ветроэлектростанции – Очаковскую и Тузловскую общей мощностью 37,5 мегаватт. Ветропарк расположен на трех полях протяженностью 16 км. Мощности станции хотят увеличить – всего планируется построить 150 ветроэнергетических установок мощностью 375 мегаватт.

 

описание, конструкция и изготовление своими руками

Подключение к магистральной сети электроснабжения до сих пор доступно не всем. Есть немалое число населенных пунктов, до которых линии электропередач не дошли. Да и подключенные поселки и деревни, вследствие общей изношенности линий, испытывают частые перебои с электроснабжением. Кроме того, дачные поселки, выстроенные недавно, зачастую не имеют возможности подключиться к линии, расположенной в солидном отдалении.

Решение вопроса с электроснабжением традиционно возлагается на бензиновые или дизельные электростанции, нуждающиеся в снабжении топливом, капризные и требующие постоянного наблюдения устройства. При этом, есть альтернативные источники, не нуждающиеся в топливе. Одним из них является ветрогенератор.

Что из себя представляет ветрогенератор?

Ветрогенератор — это устройство, использующее энергию ветра для выработки электрического тока. Воздушные потоки, свободно перемещающиеся в атмосфере, имеют гигантскую энергию, причем, совершенно бесплатную. Ветроэнергетика — это попытка извлечь ее и обратить на пользу.

Ветрогенератор представляет собой набор устройств, принимающих, обрабатывающих и подготавливающих для использования энергию. Потоки ветра взаимодействуют с ротором ветряка, заставляя его вращаться. Ротор посредством повышающей передачи (или напрямую) соединяется с генератором, который заряжает аккумуляторные батареи. Заряд через инвертор перерабатывается в стандартный вид (220 В, 50 Гц) и подается на приборы потребления.

На первый взгляд, комплекс устроен довольно сложно. Существуют и более простые конструкции, например, ветряки, питающие насосы. Тем не менее, для сложных приборов требуется полный комплект оборудования, способный обеспечить стабильное и качественное электроснабжение.

Зачем он нужен?

Отличительное свойство электроэнергии состоит в том, что ее можно производить в любых количествах, если позволяет оборудование. Ветрогенератор как раз и относится к таким устройствам — он производит электроэнергию. Таким образом, ветряк представляет собой электростанцию, способную обеспечивать как крупные участки с большим количеством потребителей, так и отдельные дома или приборы.

Возможности устройства зависят от размеров крыльчатки и мощности генератора. Эти два параметра являются определяющими и зависят друг от друга. Чем мощнее ротор, тем большей мощности генератор он сможет вращать, вырабатывая большое количество энергии.

При этом, ветряк может быть создан самостоятельно и обеспечивать потребности отдельной группы приборов — например, освещения, водоснабжения, вентиляции и т.д. Такая избирательность удобна для сокращения расходов на электроэнергию, обеспечения бесперебойной подачи питания на старых изношенных линиях.

Конструкция и принцип работы

Конструктивно ветрогенераторы сочетают механическую, электромеханическую и электрическую части. К механической относится ветряк, непосредственно принимающий энергию ветра и преобразующий ее во вращательное движение. Оно передается на электромеханическое устройство — генератор, преобразующий кинетическую энергию вращения в электрический ток. После этого действуют чисто электронные устройства:

  • выпрямитель. Генератор вырабатывает переменный ток, который не годится для заряда аккумуляторных батарей. Для дальнейшего использования его надо выпрямить, для чего используется выпрямительное устройство
  • контроллер заряда. Обеспечивает своевременное переключение аккумуляторных батарей с режима зарядки на режим питания потребителей, чтобы избежать выхода АКБ из строя
  • аккумулятор (АКБ). Накапливает заряд, необходимый для поддержания напряжения в сети при ослаблении ветра
  • инвертор. Преобразует постоянный ток аккумулятора в обычные 220В 50 Гц переменного тока, необходимых для питания стандартных потребителей.

Все перечисленные электронные устройства являются типичным комплектом оборудования, используемым с любым типом ветряка. Изменение конструкции крыльчатки не влияет на состав комплекта, если только не происходит значительного увеличения скорости вращения, требующего изменения параметров генератора.

Виды ветрогенераторов

Используются два основных вида ветряков, имеющих принципиальные различия:

  • горизонтальные
  • вертикальные

В обоих случаях речь идет об оси вращения ротора. Конструкция различных моделей горизонтальных устройств мало отличается друг от друга, представляя собой подобие бытового вентилятора или пропеллера. Вертикальные устройства обладают намного большим разнообразием типов конструкции, внешне значительно отличаясь друг от друга. Рассмотрим их подробнее:

Горизонтальные ветряки

Горизонтальные конструкции имеют большую эффективность, так как поток ветра они воспринимают только рабочей стороной лопастей. Наибольшее распространение получили трехлопастные крыльчатки, но для небольших конструкций число лопастей может быть увеличено.

Именно горизонтальные конструкции используются для изготовления больших промышленных образцов, имеющих огромный размах лопастей (больше 100 м), которые в объединенном виде образуют довольно производительные электростанции. Государства западной Европы, такие как Дания, Германия, скандинавские страны активно используют ветряки для обеспечения населения энергией.

Устройства имеют один недостаток — они нуждаются в наведении на ветер. Для небольших ветрогенераторов проблема решается установкой хвоста наподобие самолетного, который автоматически располагает конструкцию по ветру. Большие модели имеют специальное устройство наведения, контролирующее положение крыльчатки относительно потока.

Вертикальные конструкции

Ветрогенераторы вертикального типа имеют меньшую эффективность, вследствие чего используются для обеспечения энергией лишь отдельных потребителей — частный дом, коттедж, группу приборов и т.д. Для самостоятельного изготовления такие устройства подходят больше всего, так как обладают широким выбором вариантов конструкции, не нуждаются в подъеме на очень высокую мачту (хотя это им и не противопоказано).

Вертикальные роторы могут быть собраны из любых подручных материалов, в качестве образца можно использовать любой тип из множества известных:

  • роторы Савониуса или Дарье
  • более современный ротор Третьякова
  • ортогональные конструкции
  • геликоидные устройства и т.д.

Описывать все типы подробно незачем, так как их количество постоянно увеличивается. Практически все новые разработки базируются на вертикальной оси вращения и предназначены для использования в частных домах или усадьбах. Большинство разработок предлагает собственный вариант решения основной проблемы вертикальных устройств — низкого КПД. Некоторые варианты имеют довольно высокие показатели, но обладают сложным устройством корпуса (например, конструкция Третьякова).

Расчет и выбор

Расчет мощности ветряка сводится к подсчету суммарной мощности потребления осветительными, вспомогательными и бытовыми приборами. Полученное значение увеличивается на 15-20% (запас мощности необходим при возникновении непредвиденных ситуаций), и на основании этих данных рассчитывается или выбирается готовый генератор.

От его параметров ведется построение всего остального комплекта — механические требования ложатся в основу проектирования ветряка, а эксплуатационные параметры — мощность, напряжение, сила тока — используются при создании системы накопления и обработки полученного тока.

Выбирая приборы, следует также обеспечивать небольшой (15-20%) запас мощности, который обеспечит устойчивость комплекса при возникновении форс-мажорных ситуаций.

Изготовление ветряка своими руками

Основные работы, которые предстоит сделать, это — изготовление и установка вращающегося ротора. Прежде всего следует выбрать тип конструкции и ее размеры. Определиться в этом поможет знание требуемой мощности устройства и производственные возможности.

Большинство узлов (если не все целиком) придется изготовить самостоятельно, поэтому на выбор повлияет, какие познания имеются у создателя конструкции, с какими приборами и устройствами он знаком наилучшим образом. Обычно сначала делается пробный ветряк, с помощью которого проверяется работоспособность и уточняются параметры сооружения, после чего приступают к изготовлению рабочего ветрогенератора.

Рекомендуемые товары

Что такое ветрогенератор?

Ветрогенератором называют генератор электрического тока, который предназначен для вырабатывания независимого электричества посредством превращения силы ветра в электрическую энергию. Современные ветрогенераторы — это высокотехнологическое произведение искусства. Современный агрегат вырабатывает мощность от 5 киловатт до 4500 кВт мощности. Конструкция ветрогенератора позволяет использовать силу ветра от 4-х метров в секунду. При помощи современных ветрогенераторов можно обеспечивать даже островные территории электрическим током, не говоря уже об обычном использовании генератора – прямым запуском тока в сеть. С недавнего времени появилась возможность решать проблемы с мощными потребителями энергии. Областью использования ветрогенераторов обычно являются поля, мелководье, горы или же любые другие участки, с хорошим ветропотенциалом.

Суть работы генератора очень проста и практически не изменилась с момента появления первого приспособления, работающего на силе ветра. Потоки ветра, которые набегают на лопасти, расположенные на высоте 50-100 метров, вращаются из-за прохождения через них ветра. Все вращение передается по валу к асинхронному или синхронному генератору через мультипликатор.

Широкое применение нашли ветряки без использования мультипликатора, потому что их отсутствие привело к увеличению производительности. Если направление ветра изменилось, датчики, находящиеся на башне ВГ, дают команду на разворот лопастей в направлении ветра. Достижение стабилизации вращения ветрогенераторного ветроколеса происходит за счет поворота лопастей и их элементов вокруг собственной оси, и под определенным углом по направлению ветра.

Работа ветрогенераторов может быть одиночной или групповой. Бывают случаи работы ветрогенератора попарно с дизельными генераторами, для экономии расхода топлива. По несложным подсчетам можно понять, какой толк в ветрогенераторе, расхода киловатт часов за один год. К примеру, если мощность ветрогенератора 800 КВт, а средняя скорость ветра 6 метров в секунду, то производство энергии будет равное полтора миллиона КВт ч., а при скорости 5 метров в секунду – 1 100 000 КВт.ч. электричества.

Генератор ветряной энергии, мощность которого 2000 КВт, при средней скорости ветра за год 6 метров в секунду, произведет энергии за год 3 700 000 КВт часов, а если средняя скорость ветра в 5 метров в секунду 2 300 000 кВт часов электрической энергии.

Дата публикации: 01.10.2015

Похожие записи:

Ветрогенераторы: вопросы и ответы — Энергетика и промышленность России — № 09 (101) май 2008 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 09 (101) май 2008 года

Ветрогенераторы – это генераторы электрической энергии, работающие под действием энергии ветра. Сегодня ветрогенераторы – высокотехнологичные изделия мощностью от 5 кВт до 4500 кВт единичной мощности. Ветрогенераторы современных конструкций позволяют экономически эффективно использовать энергию даже самых слабых ветров – от 4 метров в секунду. С помощью ветрогенераторов можно не только поставлять электроэнергию в централизованные сети, но и решать задачи электроснабжения локальных объектов.

Как работает ветрогенератор?

Набегающие потоки ветра на высоте башни ветрогенератора – от 40 до 100 метров – вращают лопасти ветрогенератора. Энергия вращения передается по валу ротора на мультипликатор, который, в свою очередь, вращает асинхронный или синхронный электрический генератор. Широко распространены конструкции ветрогенераторов, не имеющих мультипликатора, что существенно увеличивает их производительность.

При изменении направления ветра сенсоры на башне ветрогенератора подают команду, и механизм ориентации поворачивает башню ветрогенератора по ветру.

Стабилизация вращения ветроколеса ветрогенератора достигается различными методами, один из которых – поворот лопастей или их фрагментов вокруг своей оси под углом к направлению ветра.

Ветрогенераторы могут работать как по одиночке (единичный комплекс), так и группами (ветропарк). Часто один или несколько ветрогенераторов работают параллельно с дизель-генераторами в качестве средства экономии расходов на дизельное топливо.

Что дает ветрогенератор?

Ветрогенератор мощностью 800 кВт при среднегодовой скорости ветра 6 м/с произведет за год 1500000 кВт-часов электроэнергии, при среднегодовой скорости ветра 5 м/с – 1100000 кВт-часов электроэнергии.

Ветрогенератор мощностью 2000 кВт при среднегодовой скорости ветра 6 м/с произведет за год 3700000 кВт-часов электроэнергии, при среднегодовой скорости ветра 5 м/с –2300000 кВт-часов электроэнергии.

Где применяются ветрогенераторы?

В самых разных местах: это открытые территории с хорошим ветропотенциалом, поля, острова, мелководье, горы. В России применение ветрогенераторов очень перспективно там, где подключение к существующим сетям дороже ветроэнергетического проекта или доставка дизельного топлива обходится дорого. А таких мест, изолированных или удаленных от централизованного энергоснабжения, у нас немало.

Какой силы ветер нужен для работы ветрогенератора?

Использование ветрогенератора экономически эффективно в местности со среднегодовой скоростью ветра от 4 м/с.

Для чего нужны ветрогенераторы?

Аргументов в пользу применения ветроэнергетических установок множество. Вот основные из них:
это независимый от внешних факторов источник электроэнергии;
после достижения срока окупаемости ветрогенератор требует затрат только на его обслуживание;
применение ветрогенераторов позволяет до 80 процентов сократить затраты на дизельное топливо в тех местах, где дизель-генераторы являются основным источником электроэнергии. Следовательно, экономятся расходы на хранение и транспортировку дизельного топлива, а энергоснабжение таких объектов перестает зависеть от случайных факторов;
капитальные затраты на ветроэнергетический комплекс по сравнению с традиционными источниками электроэнергии достаточно низки. Ориентировочно это 1300 евро на 1 кВт установленной мощности «под ключ»;
сроки ввода в эксплуатацию ветрогенераторов достаточно коротки. После изготовления оборудования (6‑8 месяцев) по заказу поставка и монтаж длятся 1‑2 месяца. В случае применения ветрогенераторов «с пробегом» срок поставки ограничивается 1‑2 месяцами;
ветроэнергетические установки не загрязняют окружающую среду. Этот аргумент становится все более актуальным при согласовании новых промышленных проектов в России.

Как влияют высота мачты и диаметр ротора на выработку энергии?

Увеличение высоты мачты до 18‑26 метров позволяет повысить среднегодовую скорость ветра на высоте оси на 15‑30 процентов и тем самым увеличить выработку энергии в 1,3‑1,5 раза.

Это особенно эффективно при среднегодовых скоростях ветра меньше 4 м/с.

Высокая мачта также позволяет устранить влияние деревьев и построек. Мощность зависит от диаметра в квадрате. Диаметр ротора выбирается исходя из среднегодовой скорости ветра. При ветре до 6‑7 м/с выработка ротора диаметром 5 метров выше, чем у ротора 4,2 метра. При больших среднегодовых скоростях ветра выработка выравнивается.

Расчет выработки энергии ветрогенератором

Немало статей размещено в интернете, в том числе и на нашем сайте, о том, как рассчитать систему с солнечными батареями для конкретного дома, дачи, офиса или производственного здания. Нельзя не затронуть тему расчета системы содержащей ветрогенератор.

Тонкости расчета вырабатываемой энергии ветрогенератором

Ветрогенератор в автономной системе крайне полезен. По большей части тем, что его выработка не имеет ярко выраженной зависимости от сезонов. Солнечные батареи хорошо работают летом и плохо зимой, тогда как ветрогенераторы сохраняют свою эффективность в зимний период. Немало важно то, что сильные ветра, как правило, наблюдаются в пасмурную погоду, поэтому совместное применение ветрогенераторов и солнечных панелей достаточно обоснованно. 

Основная проблема ветровых турбин заключается в том, что их эффективность мала при низких скоростях ветра. Если внимательно посмотреть на кривую зависимости мощности от скорости ветра, то можно обнаружить следующее: турбина только начнет вращаться при скорости ветра около 3метров в секунду и, более-менее ощутимая, выработка энергии начнется только при 7метрах в секунду.

Ветрогенераторы достаточно эффективны в прибрежных районах, либо на возвышенностях, где скорости ветра выше и ветра чаще. На большей части территории России средняя скорость ветра составляет 4-5метров в секунду, что создает неблагоприятные условия для применения ветрогенераторов. Но данные усреднены, поэтому следует изучить энерго-потенциал конкретной местности, если существует подозрение, что ветрогенератор  может быть эффективен.

Для повышения эффективности работы ветровых электростанций применяют различные технические решения:

  • ветрогенератор размещают на высокой мачте. Приведем пример: если увеличить высоту мачты с 5 до 20метров, выработка увеличится в 2 раза;
  • применяют ветрогенераторы с вертикальным расположением лопастей. Вертикальные турбины более эффективны при слабых ветрах, а также менее шумные, тем не менее, их стоимость значительно выше горизонтальных;
  • применяют специальные контроллеры заряда, которые, при низкой скорости, ветра сначала дают лопастям раскрутиться, и только потом подключают нагрузку. В таком режиме ветрогенератор вырабатывает некоторое количество энергии, хоть и небольшое, при слабом ветре.

On-line калькулятор для расчета энергии «ветряка»

Перейдем теперь к методам расчета систем с ветряными электростанциями. Покупая устройство, вы будете знать его заявленную номинальную мощность, а также найдете в инструкции график зависимости мощности вырабатываемой «ветряком» от скорости ветра. Имея эти данные довольно сложно оценить количество вырабатываемой энергии, поэтому для дальнейших рассуждений нужно воспользоваться одной из специальных программ, учитывающих метеорологические данные в вашей местности. Мы предлагаем вам воспользоваться удобным сервисом — on-line калькулятор на нашем сайте. Программа учитывает местоположение установки, высоту мачты, а также рельеф местности. Если в электростанции имеются солнечные батареи, в калькуляторе можно произвести расчет для всей системы и получить данные и графики как суммарной, так и раздельной выработки энергии. 

              

                

Рис.1. Расчет суточного потребления (нагрузки).
Рис.2. Подбор солнечных батарей и ветряка. Индивидуальные графики среднесуточной выработки.
Рис.3. Выгрузка графика среднесуточной выработки всех источников энергии.

Не стоит забывать о том, что программа никак не может брать в расчет влияние местных особенностей (предметов, деревьев, заграждающих зданий и т.п.), затеняющих солнечные батареи или вносящих турбулентности в поток воздуха, данные факторы следует учитывать отдельно. 

Читать еще статьи…

 

Ветропарки: защита климата в ущерб живой природе? | Анализ событий в политической жизни и обществе Германии | DW

Угольная электрогенерация, фрекинг для добычи природного газа, бурение нефтяных скважин… Такие темы  сегодня все чаще выводят на улицы защитников окружающей среды. Но и возобновляемые источники энергии также могут быть весьма спорными — даже с точки зрения экоактивистов.

Рассказывая о том, что рядом с ее домом планируют вырубить лес под новый ветропарк, Габриэле Нихаус-Юбель (Gabriele Niehaus-Uebel), по ее собственным словам, ощущает бессилие, беспомощность и ярость. Она — лидер гражданской инициативы по борьбе со строительством 20-турбинной ветряной электростанции в федеральной земле Гессен.

Акция в защиту Хамбахского леса

Хотя планы по строительству этого объекта предусматривают вырубку менее двух процентов леса, Габриэль говорит, что это все равно разрушит «ранее нетронутую экосистему». Она сравнивает лесной массив в Гессене с уникальным Хамбахским лесом недалеко от Кельна, уже много лет находящимся под угрозой вырубки: концерн RWE планирует расширить свой угольный карьер. «Экологи и активисты там сражаются за каждое дерево, и об этом постоянно пишут в СМИ. Здесь у нас хотят вырубить 200 квадратных километров — и нигде ни слова об этом не говорят», — возмущается Нихаус-Юбель.

Использование энергии ветра будет расти

Спор по поводу целесообразности строительства ветряных электростанций в Германии идет уже много лет. «У ветроэнергетики всегда было много противников, — говорит генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер (Stefan Gsänger). — И это нормально в условиях любых изменений, происходящих демократическим путем».  

Как говорится на сайте объединения, возглавляемого Нихаус-Юбель, эта группа —  лишь одна из примерно 1000 гражданских инициатив, выступающих против строительства ветропарков. Между тем ветроэнергетика позволяет частично удовлетворить растущий мировой спрос на электроэнергию. По оценкам экспертов, в ближайшие двадцать лет использование этого источника энергии возрастет на 30 процентов, снижая при этом темпы изменения климата.

У ветропарков есть немало противников

Специалисты WWEA утверждают, что ветряные турбины, введенные в эксплуатацию до конца 2018 года, способны удовлетворять около шести процентов мирового спроса на электроэнергию. При этом, как сообщает Международное агентство по возобновляемым источникам энергии, доля производства энергии на возобновляемых источниках вырастет с 25% в 2017 году до 85% к 2050 году — в основном за счет использования энергии солнца и ветра. И учитывая глобальные масштабы этих изменений, недооценивать влияние ветряных электростанций на окружающую среду было бы крайне недальновидно.

Опасность для птиц и летучих мышей

Особую опасность ветровые турбины представляют для птиц и летучих мышей. У хищных птиц, к примеру, при необычайной остроте зрения, есть и «мертвая зона»: наклоняя при поиске добычи голову вниз, они не видят того, что находится прямо по курсу, и если птица летит в сторону ветрогенератора, столкновение с его лопастями почти неизбежно. А летучие мыши становятся жертвами ветряка, даже с ним не сталкиваясь: приблизившись к нему менее чем на 100 метров, животные попадают в зону низкого давления и погибают от внутреннего кровоизлияния, вызванного резким расширением легких. 

На юге Испании — в провинции Эстремадура — из-за ошибок на этапе планирования ветропарки были построены на пути миграций огромного количества перелетных птиц через Гибралтар. Этот факт, говорится в докладе испанского отделения орнитологического сообщества SEO BirdLife, может негативно отразиться на популяциях птиц всего северного полушария и угрожать отдельным редким видам, таким, как испанский королевский орел.

В ряде других исследований, впрочем, утверждается, что от столкновения с ветряными турбинами птицы гибнут гораздо реже, чем от других причин, связанных с деятельностью человека. В США, к примеру, чаще всего птицы становятся жертвами домашних кошек, сотни миллионов птиц ежегодно врезаются в окна высотных зданий и лобовые стекла движущихся автомобилей, десятки миллионов гибнут на линиях электропередач.

Однако испанские орнитологи из SEO BirdLife настаивают на том, что подобные исследования несовершенны, поскольку их выводы основаны на небольших размерах выборки. «Нельзя упускать из виду и тот факт, что даже невысокая смертность может иметь решающее значение для видов, находящихся под угрозой исчезновения, или с очень низким уровнем размножения», — говорится в отчете группы.

Как минимизировать опасность от ветряков для живой природы?

За пределами Европы — в Южной Африке — местное отделение орнитологического сообщества BirdLife недавно отпраздновало победу: благодаря его усилиям, в горном массиве Грут Винтерхоек примерно в 120 км от Кейптауна было отменено строительство ветропарка, появление которого могло бы стать угрозой для редких видов птиц. Южноафриканское отделение координирует работу Целевой группы по вопросам энергетики, созданной в соответствии с Конвенцией ООН по сохранению мигрирующих видов диких животных (CMS). Одной из ее задач является определение территорий, где можно строить объекты возобновляемой энергетики без вреда популяциям птиц.

Многие эксперты сходятся во мнении, что правильное расположение ветропарков и технологические усовершенствования в большинстве случаев позволят минимизировать опасность ветрогенераторов для биологического разнообразия. Довольно эффективным, на их взгляд, может стать выборочное отключение турбин в местах массового скопления перелетных птиц.

Выборочное отключение турбин уменьшает вероятность столкновения птиц с лопастями

Исследование 2012 года, опубликованное в ведущем международном журнале в области биологии и охраны природы Biological Conservation, зафиксировало 50-процентное снижение смертности стервятников на 13 ветряных электростанциях в Кадисе, на юге Испании, после того, как турбины стали выключать в момент приближения к ним птиц. Производство электроэнергии при этом снижалось всего на 0,7 процента в год.

Эксперты Американского института изучения природы ветра (AWWI) проанализировали случаи гибели птиц от столкновения с ветряными турбинами и пришли к выводу, что уменьшение скорости вращения лопастей при низкой скорости ветра может сократить число смертельных случаев на 50-87 процентов.

Кому должны принадлежать ветрогенераторы?

И хотя экологам не всегда удается предотвратить строительство ветропарков и свести к нулю их опасность для птиц и летучих мышей, эксперты убеждены в том, что отношение к ним будет более позитивным, если к дискуссиям, связанным с использованием альтернативных источников энергии, привлекать жителей тех регионов, где устанавливаются ветрогенераторы.

Позитивное отношение к ветровой электрогенерации можно сформировать, если «максимально вовлекать к обсуждению этой темы всех, на чью жизнь влияет строительство ветряных электростанций, и изначально гарантировать им максимально возможные права собственности и преимущества», — уверен генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер.

В развивающихся странах, таких, как, к примеру, Мали, возобновляемые источники энергии играют особенно важную роль в преодолении бедности, и передача их в собственность местным общинам может изменить ситуацию к лучшему, убежден Гзенгер. «У людей была бы не только энергия, но и контроль над ней», — объясняет он.

В одном взгляды сторонника строительства ветряных электростанций Штефана Гзенгера и их активного противника Габриэле Нихаус-Юбель сходятся: если ветрогенераторы передать в собственность людям и позволить им принимать участие в решении всех важных вопросов, связанных с эксплуатацией, это поможет уменьшить негативное воздействие ветряных электростанций на окружающую среду. Ведь люди, которым принадлежит земля, любят и ценят ее больше, чем кто-либо другой.

______________

Подписывайтесь на наши каналы о России, Германии и Европе в | Twitter | Facebook | YouTube | Telegram 

 Смотрите также:

  • Альтернативные ландшафты Германии

    Дисен-ам-Аммерзе (Бавария) • На прошлой июльской неделе мы опубликовали этот снимок из Баварии в нашей рубрике «Кадр за кадром» — причем, руководствуясь чисто эстетическими соображениями: не смогли пройти мимо столь живописного ландшафта. Публикация этого пейзажа с солнечными батареями вызвала оживленное обсуждение в соцсетях — о пользе и вреде возобновляемых источников энергии.

  • Альтернативные ландшафты Германии

    Лемвердер (Нижней Саксония) • Поэтому сегодня продолжим тему солнечных панелей и ветряков на немецких просторах. На возобновляемые источники в Германии уже приходится более 40 процентов всего объема вырабатываемой электроэнергии.

  • Альтернативные ландшафты Германии

    Ульм (Баден-Вюртемберг) • При этом официальная немецкая статистика в этих данных учитывает энергию ветра, солнца, воды, а также получаемую разными путями из биомассы и органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Якобсдорф (Бранденбург) • В 2018 году на наземные (оншорные) и морские (офшорные) ветроэнергетические установки и парки в Германии пришлась почти половина всего объема произведенной возобновляемой энергии — 41 % и 8 % соответственно.

  • Альтернативные ландшафты Германии

    Пайц (Бранденбург) • Доля солнечных электростанций в этом возобновляемом энергетическом «коктейле» достигла 20 %.

  • Альтернативные ландшафты Германии

    Юнде (Нижняя Саксония) • Ровно столько же, то есть 20 % пришлось на использование биомассы в качестве альтернативного источника электрической энергии. Еще три процента дает использование органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Хаймбах (Северный Рейн — Вестфалия) • Оставшиеся семь процентов возобновляемой энергии приходятся на ГЭС. Возможности для строительства гидроэлектростанций в Германии ограничены, но используются эти ресурсы уже очень давно. Эту электростанцию в регионе Айфель построили в 1905 году. Оснащенная современными турбинами, она исправно работает до сих пор.

  • Альтернативные ландшафты Германии

    Халлиг Хооге (Шлезвиг-Гольштейн) • Для полноты картины приведем расклад по всем источникам в Германии за 2018 год: АЭС — 13,3 %, бурый уголь — 24,1 %, каменный уголь — 14,0 %, природный газ — 7,4 %, ГЭС — 3,2 %, ветер — 20,2%, солнце — 8,5 %, биомасса — 8,3 %.

  • Альтернативные ландшафты Германии

    Гарцвайлер (Северный Рейн — Вестфалия) • В 2038 году в Германии намерены полностью отказаться от сжигания бурого угля для получения электроэнергии. Последний атомный реактор, согласно решению федерального правительства, должны вывести из эксплуатации в 2022 году. В прошлом году на АЭС и бурый уголь пришлось более 37 %, которые необходимо будет чем-то замещать.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • По данным на конец 2018 года в Германии насчитывалось более 29 тысяч наземных ветроэнергетических турбин. В прибрежных морских водах Германии расположено еще около 1350 ветряков, однако более четырех десятков из них еще не были подключены в энергетическую сеть.

  • Альтернативные ландшафты Германии

    Северное море (Шлезвиг-Гольштейн) • Серьезную проблему представляет необходимость строительства новых энергетических трасс для транспортировки энергии из северных регионов, где ветер дует чаще и сильнее (здесь много таких турбин), к потребителям в западные и южные части Германии.

  • Альтернативные ландшафты Германии

    Лебус (Бранденбург) • Эти планы вызывают протесты жителей в тех густонаселенных регионах, по которым линии электропередач должны проходить. В некоторых местах люди требуют убирать высоковольтные ЛЭП под землю.

  • Альтернативные ландшафты Германии

    Рюген (Мекленбург — Передняя Померания) • Планы установки новых ветроэнергетических турбин в разных регионах все чаще наталкиваются в Германии на сопротивление со стороны населения. Соответствующие судебные иски часто имеют успех, что уже заметно сказывается на годовых показателях роста отрасли — тем более, что подходящие места становится находить все труднее.

  • Альтернативные ландшафты Германии

    Вормс (Рейнланд-Пфальц) • Согласно данным службы Deutsche WindGuard, в 2018 году в Германии было введено в эксплуатацию всего 743 новых ветряка. При этом предыдущий 2017 год оказался рекордным в истории развития этого вида возобновляемой энергии в ФРГ: почти 1849 новых установок.

  • Альтернативные ландшафты Германии

    Дассов (Мекленбург — Передняя Померания) • Всего в Германии сейчас насчитывается около тысячи гражданских инициатив, выступающих против строительства новых ветряков. Их сторонники считают, что эти установки разрушают жизненное пространство птиц и летучих мышей, уродуют ландшафты, а инфразвук и прочий постоянный шум этих установок вредит здоровью людей, живущих по соседству.

  • Альтернативные ландшафты Германии

    Восточная Фризия (Нижняя Саксония) • Эти инициативы требуют, в частности, в качестве альтернативы рассматривать газовые и паровые электростанции, повышать эффективность угольных станций, а также пересмотреть решение парламента и правительства Германии об отказе от атомной энергии.

  • Альтернативные ландшафты Германии

    Зауэрланд (Северный Рейн — Вестфалия) • Представители отрасли обычно указывают на недоказанность негативного влияния инфразвука на здоровье. Что касается гибели птиц из-за ветровых установок, специалисты называют разные цифры, максимум — до 200 тысяч в год в целом по Германии. Для сравнения: в результате столкновений со стеклами окон и фасадов погибает около 18 миллионов птиц в год.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • Летучих мышей гибнет более 100 тысяч в год (по некоторым оценкам, втрое больше) — не только от столкновений с лопастями, но и из-за травм, получаемых в результате завихрений воздуха, когда они пролетают рядом. Много гибнет во время сезонной миграции. Эксперты требуют учитывать эти факторы — в частности, отключать ветряки в часы особой активности летучих мышей.

  • Альтернативные ландшафты Германии

    Бедбург-Хау (Северный Рейн — Вестфалия) • Правила выбора мест для ветряков регулируются земельными законами. Например, в Северном Рейне — Вестфалии минимальное расстояние до жилых построек составляет 1500 метров, в Тюрингии — 750 метров. В Баварии это расстояние вычисляется по формуле «Высота установки х 10», то есть, например, два километра между жилыми зданиями и двухсотметровым ветряком.

  • Альтернативные ландшафты Германии

    Ренцов (Мекленбург — Передняя Померания) • Дискуссии о развитии возобновляемых источников энергии часто ведутся в Германии эмоционально и будут продолжаться в обозримом будущем. Чтобы повысить готовность населения видеть в окрестностях такие установки, предлагается, в частности, отчислять дополнительную часть доходов конкретным регионам на различные нужные и полезные для местных жителей проекты.

    Автор: Максим Нелюбин


WINDExchange: что такое ветроэнергетика?

На этом виде с воздуха на ветряную электростанцию ​​показано, как группа ветряных турбин может производить электроэнергию для коммунальной сети. Электроэнергия подается по линиям передачи и распределения в дома, предприятия, школы и так далее. Просмотрите анимацию ветряной турбины, чтобы увидеть, как она работает, или загляните внутрь.

Энергия ветра или Энергия ветра описывает процесс, с помощью которого ветер используется для выработки механической энергии или электричества.Ветровые турбины преобразуют кинетическую энергию ветра в механическую энергию. Эта механическая энергия может использоваться для конкретных задач (например, измельчения зерна или перекачивания воды) или может быть преобразована в электричество с помощью генератора.

Вы можете узнать, как ветряные турбины вырабатывают электричество, и увидеть иллюстрацию компонентов внутри ветряной турбины или просмотреть анимацию ветровой энергии, которая показывает, как движущийся воздух вращает лопасти ветряной турбины и как внутренние компоненты работают для выработки электроэнергии.

Размеры и применение ветряных турбин

Ветровые турбины могут обеспечивать энергией как для использования на месте, так и для продажи на экспорт. Потребность в энергии определит размер турбины.

Экономика ветряных турбин максимальна, если размер проекта рассчитан на соответствие потребностям нагрузки в энергии, а также на монетизацию экономии за счет масштаба и послужного списка оборудования. Для использования энергии в жилых домах требуется небольшая турбина (обычно менее 10 киловатт (кВт)), которая может генерировать количество энергии, необходимое дому для повседневной работы.Машины среднего размера могут производить достаточно энергии, чтобы выдерживать большие коммерческие нагрузки на объекте. Машины масштаба коммунальных предприятий, которые максимизируют генерацию с учетом занимаемой площади и стоимости инфраструктуры объекта, лучше всего подходят для проектов масштаба коммунальных предприятий.

Независимо от размера проекта, проекты, подключенные к электросети, потребуют согласований со стороны коммунальных служб и могут потребовать проведения исследований воздействия на сеть до начала строительства.

Потребление энергии на месте в жилых домах (

<10 кВт)

Бытовые небольшие турбины производят примерно столько энергии, сколько требуется дому.Поскольку эти турбины обычно устанавливаются на более короткие башни, вам необходимо получить оценку площадки, чтобы определить, где разместить проект, чтобы убедиться, что он будет работать так, как задумано. Эти ветряные турбины приобретаются за наличные, поэтому, хотя важно учитывать окупаемость инвестиций, это не всегда является решающим фактором при реализации проекта. Многие государства предоставляют стимулы для этого класса машин. Ветряные турбины для жилых домов обычно не требуют подробной оценки ресурсов на месте.

Небольшое коммерческое использование энергии на месте (10-50 кВт)

Ветряки этого класса производят больше энергии, чем потребляет средний дом, но могут хорошо подходить для малых предприятий; фермы; ранчо; объекты, такие как школы, офисные здания или часть университетского городка; или общественная нагрузка, такая как больница. Этот класс турбин обычно включает более высокий уровень сложности машин, что приводит к большей эффективности и выработке энергии, но также требует повышенного обслуживания.Однако эти турбины обычно требуют меньшего обслуживания, чем более крупные машины. Машины этого класса могут стоить столько же, сколько дом, и являются наименьшим размером проекта, который может быть профинансирован, что потребует проверки кредитора. Проекты такого размера также могут вызвать потребность в оценке ресурсов на месте, но часто проекты могут продвигаться вперед, используя измерения поблизости, а также опытное размещение и моделирование проекта.

Энергопотребление на месте в коммерческих целях (50-250 кВт)

Этот класс ветряных турбин производит коммерческое количество энергии и может быть хорошо согласован с университетскими городками, более крупными объектами, сообществами и более крупными муниципальными коммунальными нагрузками.Этот класс ветряных турбин имеет много общих технических и эксплуатационных характеристик с машинами коммунального масштаба и часто устанавливается на мачтах, требующих специальных разрешений и согласования с другими регулирующими организациями или агентствами. Эти турбины часто требуют значительных капиталовложений и, следовательно, требуют корпоративных или институциональных одобрений. Для руководителей предприятий нет ничего необычного в том, чтобы сотрудничать с финансовыми игроками при разработке проектов такого размера. Эти проекты требуют опытного и подробного моделирования проекта с использованием данных о ветровых ресурсах на месте или поблизости.

Крупное коммерческое или промышленное энергопотребление (500 кВт — 1,5 МВт)

Этот класс ветряных турбин является лучшим среди машин среднего размера и хорошо подходит для сообществ и очень больших промышленных нагрузок на объекте, а в определенных ситуациях может даже стать основой небольших ветряных электростанций. Этот класс машин с технологической точки зрения обычно неотличим от турбин для коммунальных предприятий. Башни часто превышают 200 футов, и их необходимо оборудовать заградительным освещением. Проекты такого размера требуют участия и одобрения или одобрения сообщества на всех уровнях.Этот класс, за исключением очень необычных ситуаций, обычно финансируется через коммерческих кредиторов с их собственными требованиями должной осмотрительности и, следовательно, требует технико-экономических обоснований и кампаний по оценке ресурсов на месте.

Энергопотребление в коммунальном масштабе (1,5-7,5 МВт)

Ветряные турбины коммунального назначения, которые также иногда устанавливаются на месте использования, обычно устанавливаются большими группами, производящими энергию для продажи. Это высокоэффективные современные ветряные турбины, которые работают с исключительно высокой степенью готовности и генерируют конкурентоспособную по стоимости электроэнергию в масштабах электростанции.Эти большие турбины имеют роторы диаметром более 250 футов и устанавливаются на высоких башнях, требующих уведомления о препятствиях с воздуха и освещения. Из-за своего размера и масштаба установок ветряные турбины коммунального масштаба требуют согласования с окружающей средой, коммунальными службами и общественностью на самом высоком уровне. Ветряные электростанции масштаба коммунальных предприятий требуют точной оценки ресурсов, юридической и финансовой проверки, интеграции коммунальных предприятий и финансирования, типичных для объектов с очень крупными капиталовложениями, таких как аэропорты.

Энергия ветра | Национальное географическое общество

Все, что движется, обладает кинетической энергией, а ученые и инженеры используют кинетическую энергию ветра для выработки электричества. Энергия ветра, или энергия ветра, создается с помощью ветряной турбины, устройства, которое направляет энергию ветра для выработки электроэнергии.

Ветер обдувает лопатки турбины, прикрепленные к ротору. Затем ротор вращает генератор для выработки электричества. Есть два типа ветряных турбин: ветряные турбины с горизонтальной осью (HAWT) и ветровые турбины с вертикальной осью (VAWT).HAWT — наиболее распространенный тип ветряных турбин. Обычно у них есть две или три длинных тонких лопасти, похожие на воздушный винт самолета. Лопасти расположены так, что они обращены прямо против ветра. VAWT имеют более короткие и широкие изогнутые лопасти, которые напоминают лопасти, используемые в электрическом миксере.

Небольшие индивидуальные ветряные турбины могут производить 100 киловатт энергии, достаточной для питания дома. Небольшие ветряные турбины также используются в таких местах, как водонасосные станции. Ветряки чуть большего размера расположены на башнях высотой до 80 метров (260 футов) с лопастями ротора, длина которых составляет примерно 40 метров (130 футов).Эти турбины могут генерировать 1,8 мегаватта энергии. Еще более крупные ветряные турбины можно найти на башнях высотой 240 метров (787 футов) с лопастями ротора длиной более 162 метров (531 фут). Эти большие турбины могут генерировать от 4,8 до 9,5 мегаватт энергии.

После выработки электроэнергии ее можно использовать, подключать к электросети или хранить для будущего использования. Министерство энергетики США работает с национальными лабораториями над разработкой и улучшением технологий, таких как батареи и гидроаккумулирующие установки, чтобы их можно было использовать для хранения избыточной энергии ветра.Такие компании, как General Electric, устанавливают батареи вместе со своими ветряными турбинами, чтобы электричество, вырабатываемое за счет энергии ветра, можно было сразу же хранить.

По данным Геологической службы США, в США имеется 57 000 ветряных турбин как на суше, так и на море. Ветровые турбины могут быть автономными структурами или они могут быть объединены в так называемую ветряную электростанцию. В то время как одна турбина может вырабатывать достаточно электроэнергии для удовлетворения потребностей в энергии одного дома, ветряная электростанция может производить гораздо больше электроэнергии, достаточной для снабжения энергией тысяч домов.Ветряные электростанции обычно располагаются на вершине горы или в другом месте, где ветрено, чтобы использовать преимущества естественных ветров.

Самая большая оффшорная ветряная электростанция в мире называется Walney Extension. Эта ветряная электростанция расположена в Ирландском море примерно в 19 км (11 милях) к западу от северо-западного побережья Англии. Расширение Уолни занимает огромную территорию в 149 квадратных километров (56 квадратных миль), что делает ветряную электростанцию ​​больше, чем город Сан-Франциско, Калифорния, или остров Манхэттен в Нью-Йорке.Сеть из 87 ветряных турбин имеет высоту 195 метров (640 футов), что делает эти морские ветряные турбины одними из самых больших ветряных турбин в мире. Walney Extension имеет потенциал для выработки 659 мегаватт электроэнергии, чего достаточно для снабжения электричеством 600 000 домов в Соединенном Королевстве.

История ветроэнергетики — Управление энергетической информации США (EIA)

Люди использовали энергию ветра тысячи лет

Люди использовали энергию ветра для передвижения лодок по реке Нил еще в 5000 году до нашей эры.К 200 г. до н.э. в Китае использовались простые ветряные водяные насосы, а в Персии и на Ближнем Востоке ветряные мельницы с лопастями из плетеного тростника перемалывали зерно.

Новые способы использования энергии ветра со временем распространились по всему миру. К 11 веку люди на Ближнем Востоке широко использовали ветряные насосы и ветряные мельницы для производства продуктов питания. Купцы и крестоносцы принесли в Европу ветровую технику. Голландцы разработали большие ветряные насосы для осушения озер и болот в дельте реки Рейн.В конечном итоге иммигранты из Европы перенесли ветроэнергетику в Западное полушарие.

Американские колонисты использовали ветряные мельницы для измельчения зерна, перекачивания воды и пиления древесины на лесопилках. Поселенцы и владельцы ранчо установили тысячи ветряных насосов, заселяя запад Соединенных Штатов. В конце 1800-х — начале 1900-х годов также широко использовались небольшие ветроэлектрические генераторы (ветряные турбины).

Количество ветряных насосов и ветряных турбин сократилось, поскольку в рамках программ электрификации сельских районов в 1930-х годах линии электропередач были продлены до большинства ферм и ранчо по всей стране.Однако на некоторых ранчо до сих пор используются ветряные насосы для подачи воды для скота. Небольшие ветряные турбины снова становятся все более распространенными, в основном для снабжения электроэнергией отдаленных и сельских районов.

Традиционная голландская ветряная мельница

Источник: стоковая фотография (защищена авторским правом)

Современные ветряки

Источник: стоковая фотография (защищена авторским правом)

Использование энергии ветра увеличилось в связи с нехваткой нефти и проблемами окружающей среды

Дефицит нефти 1970-х изменил энергетическую среду Соединенных Штатов и всего мира.Дефицит нефти вызвал интерес к разработке способов использования альтернативных источников энергии, таких как энергия ветра, для производства электроэнергии. Федеральное правительство США поддерживало исследования и разработки больших ветряных турбин. В начале 1980-х годов в Калифорнии были установлены тысячи ветряных турбин, в основном из-за политики государства и штата, поощрявшей использование возобновляемых источников энергии.

В 1990-х и 2000-х годах федеральное правительство США создало стимулы для использования возобновляемых источников энергии в ответ на новую заботу об окружающей среде.Федеральное правительство также предоставило финансирование исследований и разработок, чтобы помочь снизить стоимость ветряных турбин, и предложило налоговые и инвестиционные льготы для проектов в области ветроэнергетики. Кроме того, правительства штатов приняли новые требования к производству электроэнергии из возобновляемых источников, а продавцы электроэнергии и коммунальные предприятия начали предлагать своим клиентам электроэнергию, произведенную с помощью ветра и других возобновляемых источников энергии (иногда называемую зеленой энергией ). Эти стратегии и программы привели к увеличению количества ветряных турбин и количества электроэнергии, вырабатываемой за счет энергии ветра.

Доля ветроэнергетики в США выросла с менее чем 1% в 1990 году до примерно 8,4% в 2020 году. Стимулы в Европе привели к значительному расширению использования энергии ветра там. Китай вложил значительные средства в ветроэнергетику и в настоящее время является крупнейшим в мире производителем ветровой электроэнергии. В 1990 году в 16 странах было выработано в общей сложности около 3,6 млрд кВтч ветровой электроэнергии. В 2019 году 127 стран произвели в общей сложности около 1,42 трлн кВтч ветровой электроэнергии.

Последнее обновление: 17 марта 2021 г.

лопастей ветряных турбин не должны попадать на свалки

Это один из четырех блогов в серии, посвященной текущим проблемам и возможностям вторичного использования экологически чистых технологий.См. Вводный пост , а также другие статьи о солнечных панелях и аккумуляторных батареях . Особая благодарность Джессике Гарсиа, научному сотруднику UCS по политике чистой энергии Среднего Запада на лето 2020 года, за поддержку в исследованиях и соавторство этих публикаций.

Ветровые турбины увеличились в размерах и количестве, чтобы удовлетворить потребности в чистой энергии

Современная ветроэнергетика преобразует кинетическую энергию (движение) ветра в механическую.Это происходит за счет вращения больших лезвий из стекловолокна, которые затем вращают генератор для производства электроэнергии. Известные ветряные турбины могут располагаться на суше или на море.

Прогнозируется, что к 2050 году ветроэнергетика продолжит расти в США. Последний отчет о рынке ветряных технологий, подготовленный Национальной лабораторией Лоуренса в Беркли, показал, что цены на ветровую энергию находятся на рекордно низком уровне, а в 2019 году — 7,3 процента выработки электроэнергии коммунальными предприятиями. в США пришел ветер.В этом сообщении блога мы рассмотрим наземные ветряные турбины и возможности утилизации, которые существуют, но еще не получили широкого распространения для лопаток турбин.

Источник: Berkeley Lab Electric Markets & Policy (https://emp.lbl.gov/wind-energy-growth)

Конструкции ветряных турбин со временем развивались, увеличиваясь в размерах и увеличивая эффективность, что в конечном итоге привело к увеличению генерирующих мощностей. Основная конструкция промышленных турбин сегодня — это ветряные турбины с горизонтальной осью, состоящие из ротора с тремя лопастями из стекловолокна, прикрепленными к ступице, которая сама прикреплена к центральной детали (гондоле), установленной на стальной башне.Различное другое оборудование и бетонные фундаменты также включены в современные конструкции ветряных турбин, которые включают более 8000 деталей на турбину.

Лопасти ветряных турбин в существующем парке США в среднем составляют около 50 метров в длину или около 164 футов (примерно ширина американского футбольного поля). А с учетом недавних тенденций к использованию более длинных лопастей на более крупных турбинах и более высоких башнях для увеличения выработки электроэнергии, некоторые из самых крупных лопастей, производимых сегодня, достигают 60-80 метров в длину.

Источник: Лаборатория Беркли, Обновление данных по ветроэнергетическим технологиям: издание 2020 г., стр. 37.Обратите внимание, что диаметр ротора (показанный здесь в метрах) чуть более чем в два раза превышает длину лопастей

.

Фото: Джеймс Жиньяк

Что касается долговечности, ветряные турбины служат в среднем около 25 лет. Около 85% материалов компонентов турбины, таких как сталь, медная проволока, электроника и зубчатые передачи, можно переработать или использовать повторно. Но лезвия отличаются, поскольку они сделаны из стекловолокна (композитного материала), чтобы быть легкими для эффективности, но при этом достаточно прочными, чтобы выдерживать штормы.Смешанная природа материала лезвия затрудняет отделение пластика от стекловолокна для переработки в пригодный для обработки стекловолоконный материал, а прочность, необходимая для лезвий, означает, что их также физически сложно сломать.

Куда теперь попадают бывшие в употреблении лопасти ветряных турбин?

Лопасти ветряных турбин требуют утилизации или вторичной переработки, когда турбины выводятся из эксплуатации на стадии завершения использования или когда ветряные электростанции модернизируются в процессе, известном как восстановление мощности.Обновление включает в себя сохранение того же места и часто обслуживание или повторное использование первичной инфраструктуры ветряных турбин, но модернизацию с использованием турбин большей мощности. Лезвия могут быть заменены на более современные и, как правило, большие лезвия. В любом случае лопасти из стекловолокна, когда они больше не нужны, представляют собой серьезнейшую проблему с точки зрения конечного использования ветроэнергетики.

Хотя лезвия можно разрезать на несколько частей на месте во время вывода из эксплуатации или повторного включения, эти части по-прежнему сложно и дорого транспортировать для переработки или утилизации.А процесс резки чрезвычайно прочных лезвий требует огромного оборудования, такого как канатные пилы на транспортных средствах или пилы с алмазным канатом, подобные тем, что используются в карьерах. Поскольку в настоящее время существует очень мало вариантов утилизации лезвий, подавляющее большинство из тех, которые достигают конца использования, либо хранятся в разных местах, либо отправляются на свалки.

Действительно, Bloomberg Green ранее в этом году сообщал о вывозе лопастей ветряных турбин на свалки. Несмотря на то, что поток отходов представляет собой лишь крошечную долю твердых бытовых отходов США, это явно не идеальная ситуация.По мере вывода из эксплуатации или замены ветряных турбин возникает необходимость в более творческих решениях по переработке использованных лопастей.

Хорошая новость в том, что в настоящее время ведутся работы по разработке альтернатив. Две крупные компании в США, PacificCorp и MidAmerican Energy, например, недавно объявили о планах наладить партнерские отношения с компанией Carbon Rivers из Теннесси по переработке некоторых израсходованных лопаток турбин вместо их захоронения. Технология, используемая Carbon Rivers, поддерживается за счет грантов Министерства энергетики США и будет использоваться для разрушения и повторного использования стекловолокна из использованных лопаток турбин.

Фото: Flickr / Chuck Coker

Новые инновации в переработке стекловолокна

В то время как композитная природа лопаток турбины из стекловолокна, как известно, затрудняет их устранение на этапе завершения использования, интерес к поиску альтернатив также может стимулировать творчество и инновации. Например, в рамках партнерства с участием университетов США, Ирландии и Северной Ирландии под названием Re-wind было разработано несколько интересных идей проектов гражданского строительства для повторного использования и перепрофилирования лезвий из стекловолокна.Сюда входит использование выведенных из эксплуатации лопастей в проектах гражданского строительства в составе конструкций линий электропередач или башен, а также крыш для аварийного или доступного жилья. В Северной Ирландии Re-wind также рассматривает возможность их использования на пешеходных мостах вдоль зеленых насаждений.

Далее по иерархии отходов начинают появляться дополнительные варианты переработки. WindEurope, представляющая ветроэнергетику Европейского Союза, сотрудничает с Европейским советом химической промышленности (Cefic) и Европейской ассоциацией производителей композитов (EuCIA) для разработки новых методов повторного использования материалов для лопастей.По оценкам организаций, только в Европе в течение следующих нескольких лет будет выведено из эксплуатации 14 000 лопастей ветряных турбин. В мае 2020 года консорциум выпустил Accelerating Wind Turbine Blade Circularity, всеобъемлющий отчет, в котором подробно описаны дизайн, исследования и технические решения, ориентированные на жизненный цикл ветряных турбин.

Ключевым моментом при переработке композитных материалов является обеспечение того, чтобы процесс переработки имел чистый положительный результат по сравнению с альтернативой утилизации на свалках.Одним из примеров является Германия, где концепция переработки турбинных лопаток в цемент впервые была разработана около десяти лет назад на заводе, построенном в рамках партнерства между Geocycle, бизнес-подразделением корпорации строительных материалов HolcimAG, и компанией Zajons.

Эта форма рециркуляции включает в себя контроль цепочки поставок утилизации, в том числе распиливание лопаток турбины на более мелкие части на месте вывода из эксплуатации для снижения логистики и затрат на транспортировку. Этот процесс обещает 100-процентную переработку и сокращение выбросов углекислого газа при совместной переработке цемента за счет замены производства цементного сырья на переработанные лопасти, а также использование биогаза из органических остатков вместо угля в качестве топлива.

Разрабатываются и другие технологии, такие как механическая переработка, сольволиз и пиролиз, которые в идеале предоставят отрасли дополнительные возможности для работы с лезвиями из стекловолокна, когда они достигают конца использования.

Другой творческий вариант переработки позволяет получать гранулы или доски, которые можно использовать в столярных работах. В 2019 году Global Fiberglass Solutions начала производство продукта под названием EcoPoly Pellets в США и вскоре дополнительно будет производить панельную версию.Эти продукты сертифицированы как переработанные из лопастей выведенных из эксплуатации лопастей ветряных турбин посредством отслеживания радиочастотной идентификации (RFID) от лопастей до конечного продукта. EcoPoly Pellets можно превратить в различные продукты, такие как складские поддоны, напольные покрытия или парковочные болларды. Основываясь на своих прогнозах спроса, Global Fiberglass Solutions ожидает, что сможет обрабатывать от 6000 до 7000 лезвий в год на каждом из двух своих заводов в Техасе и Айове.

Дополнительный подход к переработке лезвий состоит в том, чтобы сосредоточить внимание на исходной детали — на том, из чего сделаны лезвия.Дополнительные исследования и разработки направлены на использование термопластической смолы вместо стекловолокна или углеродного волокна для лопастей ветряных турбин. Материал может быть проще и дешевле утилизировать.

В конце концов, цель увеличения количества инноваций в направлении дополнительных приложений использования списанных лопаток турбин требует наличия достаточного рыночного спроса, чтобы стимулировать создание предприятий, которые могут перерабатывать лопатки. Наряду с этой проблемой в США является отсутствие политики в отношении конечного использования лопаток турбин, что еще больше способствует сохранению статус-кво или утилизации твердых отходов на полигонах.

Достижение 100-процентной возможности вторичной переработки ветряных турбин

Как обсуждалось выше, в настоящее время дешевле утилизировать лопасти ветряных турбин на ближайшем полигоне, чем часто требуется транспортировка на большие расстояния для переработки на ограниченном количестве предприятий, которые могут их эффективно переработать. Кроме того, отрасль в настоящее время страдает от недостаточного давления со стороны регулирующих органов или рыночных стимулов для полной разработки других вариантов конечного использования.

Два подхода к более замкнутой экономике — это более тесная связь в цепочке поставок ветряных турбин и амбициозные цели.Например, Vestas Wind Systems A / S, компания, занимающаяся проектированием, производством и установкой ветряных турбин, объявила о твердом намерении произвести к 2040 году ветровые турбины без отходов. тесно сотрудничать со своими партнерами по всей цепочке поставок, чтобы в конечном итоге избежать сжигания или захоронения своей продукции. Необходимо больше партнерских отношений между компаниями ветроэнергетики, чтобы восполнить пробел и сделать системы ветроэнергетики на 100% пригодными для вторичной переработки.

Кроме того, штаты США должны рассмотреть механизмы политики для стимулирования развития рынка альтернативных решений, таких как усиление ответственности производителей, помимо утилизации лопастей ветряных турбин на свалках. Штаты могли бы дополнительно рассмотреть способы поддержки строительства региональной инфраструктуры утилизации отходов — особенно в штатах с более крупными ветряными электростанциями, такими как Техас или Айова, — для решения проблемы прекращения использования лопастей ветряных турбин.

Просмотрите другие блоги этой серии, чтобы познакомиться с технологиями переработки экологически чистой энергии, а также получить дополнительную информацию об утилизации солнечных панелей и аккумуляторов энергии.

Энергия ветра — образование в области энергетики

Рисунок 1. Ветряная электростанция в Техасе. [1]

Энергия ветра — это выработка электроэнергии из ветра. Энергия ветра собирает поток первичной энергии атмосферы, образующийся в результате неравномерного нагрева поверхности Земли Солнцем. Следовательно, энергия ветра — это косвенный способ использования солнечной энергии. Энергия ветра преобразуется в электрическую энергию ветряными турбинами. [2]

Ветровой ресурс

Несколько различных факторов влияют на потенциальный ветровой ресурс в районе.На выходную мощность влияют три основных фактора: скорость ветра , плотность воздуха и радиус лопасти . [3] Ветровые турбины должны регулярно находиться в районах с сильным ветром, что более важно, чем периодические сильные ветра.

Скорость ветра

Рис. 2. Произвольная кривая мощности ветряной турбины мощностью 1 МВт в сравнении со скоростью ветра. Обратите внимание на скорость резки. [4]

Скорость ветра в значительной степени определяет количество электроэнергии, вырабатываемой турбиной.Более высокая скорость ветра дает больше энергии, потому что более сильный ветер позволяет лопастям вращаться быстрее. [3] Более быстрое вращение приводит к большей механической мощности и большей электрической мощности от генератора. Взаимосвязь между скоростью ветра и мощностью для типичной ветряной турбины показана на рисунке 2.

Турбины предназначены для работы в определенном диапазоне скоростей ветра. Пределы диапазона известны как скорость включения и скорость выключения. [5] Скорость включения — это точка, при которой ветряная турбина может вырабатывать электроэнергию.Между скоростью включения и номинальной скоростью, где достигается максимальная мощность, выходная мощность будет увеличиваться кубическим образом со скоростью ветра. Например, если скорость ветра увеличится вдвое, выходная мощность увеличится в 8 раз. Это кубическое соотношение делает скорость ветра таким важным фактором для ветроэнергетики. Эта кубическая зависимость действительно отключается при номинальной скорости ветра. Это приводит к относительно пологой части кривой на Рисунке 2, поэтому кубическая зависимость наблюдается при скоростях ниже 15 м / с (54 км / ч).

Скорость отключения — это точка, при которой турбина должна быть остановлена, чтобы избежать повреждения оборудования.Скорости включения и выключения зависят от конструкции и размера турбины и определяются до начала строительства. [6]

Плотность воздуха

Выходная мощность связана с местной плотностью воздуха, которая является функцией высоты, давления и температуры. Плотный воздух оказывает большее давление на роторы, что приводит к увеличению выходной мощности. [7]

Конструкция турбины

Ветровые турбины предназначены для увеличения радиуса лопастей ротора и увеличения выходной мощности.Лопасти большего размера позволяют турбине улавливать больше кинетической энергии ветра за счет перемещения большего количества воздуха через роторы. [8] Однако для работы более крупных лопастей требуется больше места и более высокая скорость ветра. Как правило, турбины имеют расстояние в четыре раза больше диаметра ротора. [6] Это расстояние необходимо, чтобы избежать помех между турбинами, что снижает выходную мощность. [5] Относительное расстояние между ветряными турбинами показано на Рисунке 1.

Интерактивный график

Ветроэнергетика довольно быстро растет во многих регионах; изучите приведенные ниже данные, чтобы увидеть, как растет энергия ветра в разных странах. [9]

Для дальнейшего чтения

Список литературы

  1. ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:GreenMountainWindFarm_Fluvanna_2004.jpg#/media/File:GreenMountainWindFarm_Fluvanna_2004.jpg
  2. ↑ Развитие ветроэнергетики. (18 августа 2015 г.). Основы ветроэнергетики [Online], доступно: http://windeis.anl.gov/guide/basics/
  3. 3,0 3,1 Европейская ассоциация ветроэнергетики.(2013, 4 ноября). Как работает ветряная турбина [Online]. Доступно: http://www.ewea.org/wind-energy-basics/how-a-wind-turbine-works/
  4. ↑ По материалам: R. Wolfson, Energy, Environment and Climate, 2nd ed. Нью-Йорк: Norton, 2012. и WindPowerProgram, [Online], Доступно: http://www.wind-power-program.com/popups/powercurve.htm
  5. 5,0 5,1 Д. Вуд, частное сообщение, октябрь 2013 г.
  6. 6,0 6.1 Energy Research Unit (нет данных). (2013, 4 ноября). Energy Research Unit Meteorological Data [Online]. Доступно: http://www.elm.eru.rl.ac.uk/ins4.html
  7. ↑ WindTurbines.net (2013, 4 ноября). Факторы, влияющие на КПД ветряных турбин [Online]. Доступно: http://www.slideshare.net/windturbinesnet/factors-affecting-wind-turbine-efficiency-7146602
  8. ↑ Оренда. (2013, 4 ноября). Имеет ли значение длина лопастей ветряной турбины? [Интернет]. Доступно: http: // orendaenergy.com / действительно-имеет-значение-длина-лопасти-ветряной-турбины /
  9. ↑ BP Worldwide. (2014, 1 июля). Статистический обзор мировой энергетики, 2017 г. [Онлайн]. Доступно: https://calculators.io/statistical-review-of-world-energy/

Информация и факты о ветроэнергетике

Ветер — это движение воздуха из области высокого давления в область низкого давления. На самом деле ветер существует потому, что Солнце неравномерно нагревает поверхность Земли. По мере того, как горячий воздух поднимается, более холодный воздух заполняет пустоту.Пока светит солнце, будет дуть ветер. А ветер издавна служил источником энергии для людей.

Древние мореплаватели ловили ветер парусами. Когда-то фермеры использовали ветряные мельницы для измельчения зерна и перекачивания воды. Сегодня все больше и больше ветряных турбин выжимают из ветра электричество. За последнее десятилетие использование ветряных турбин увеличивалось более чем на 25 процентов в год. Тем не менее, он обеспечивает лишь небольшую часть мировой энергии.

Погода на нашей планете может быть очень суровой — от волн тепла и града до тайфунов и торнадо.Узнайте, что заставляет природу высвободить свою ярость.

Как это работает

Большая часть энергии ветра поступает от турбин, которые могут достигать высоты 20-этажного здания и иметь три лопасти длиной 200 футов (60 метров). Ветер вращает лопасти, которые вращают вал, соединенный с генератором, вырабатывающим электричество.

Самые большие ветряные турбины вырабатывают достаточно электроэнергии в год (около 12 мегаватт-часов) для снабжения около 600 домов в США. Ветряные электростанции имеют десятки, а иногда и сотни таких турбин, выстроенных вместе в особенно ветреных местах.Небольшие турбины, установленные на заднем дворе, могут производить достаточно электроэнергии для одного дома или небольшого предприятия.

Быстро развивающаяся ветроэнергетика

Ветер — это чистый источник возобновляемой энергии, не вызывающий загрязнения воздуха и воды. А поскольку ветер здесь бесплатный, эксплуатационные расходы после установки турбины практически равны нулю. Массовое производство и технический прогресс удешевляют турбины, и многие правительства предлагают налоговые льготы, чтобы стимулировать развитие ветроэнергетики.

К недостаткам относятся жалобы местных жителей на уродливые и шумные ветряные турбины.Медленно вращающиеся лезвия также могут убивать птиц и летучих мышей, но не так много, как автомобили, линии электропередач и высотные здания. Ветер тоже переменчив: если он не дует, электричество не вырабатывается.

Тем не менее, ветроэнергетика процветает. Благодаря глобальным усилиям по борьбе с изменением климата, таким как Парижское соглашение, возобновляемые источники энергии переживают бум роста, в первую очередь ветряная энергия. С 2000 по 2015 год совокупная ветровая мощность во всем мире увеличилась с 17 000 мегаватт до более чем 430 000 мегаватт.В 2015 году Китай также обогнал ЕС по количеству установленных ветряных турбин и продолжает лидировать в установке.

Отраслевые эксперты прогнозируют, что при сохранении таких темпов роста к 2050 году одна треть мировых потребностей в электроэнергии будет удовлетворяться за счет энергии ветра.

Разве ветряная турбина никогда не будет вырабатывать столько энергии, сколько стоит ее строительство?

Джон Гринберг, PolitiFact.com | Austin American-Statesman

Техасская ветроэнергетика опережает нацию и часть света

Путь Техаса к превращению в ветряную электростанцию ​​может стать картой для многих U.С. утверждает, что обладает значительными ветровыми ресурсами.

США СЕГОДНЯ

Вирусное изображение: Говорит, что ветряная турбина «никогда не могла генерировать столько энергии, сколько было вложено в ее строительство».

Рейтинг PolitiFact: Неверно

И вот почему: Ветряные фермы являются опорой американской стратегии борьбы с изменением климата. Сейчас они производят более 8% электроэнергии страны, и ожидается, что их производство почти удвоится в течение следующего десятилетия.

Сообщение в Facebook звучит как проигрышное предложение.

«Ветряная мельница может вращаться, пока не развалится, и никогда не будет генерировать столько энергии, сколько было вложено в ее строительство», — говорится в версии сообщения от 16 сентября. Это считается заявлением о зомби. В 2019 году мы обнаружили более раннюю версию False, но она снова работает.

Проверка фактов: Байден сказал, что повышение лимита долга обычно является двусторонним. Это правильно?

Изображение увенчано яркой фотографией горящей ветряной турбины (снято во время пожара в марте 2020 года в Техасе) и дает некоторые детали.

«Ветряная мельница мощностью 2 мегаватта состоит из 260 тонн стали, для чего требуется 300 тонн железной руды и 170 тонн коксующегося угля, добытых, транспортируемых и добываемых за счет углеводородов», — говорится в сообщении. (Мы исправили несколько опечаток в тексте.)

Пост неверный. От строительства до сноса окупаемость энергии ветряной мельницы может составлять менее года. Наивысшая оценка, которую мы обнаружили, была чуть меньше шести лет.

Цитата, подобранная вишенкой

Цифры в сообщении взяты из сборника эссе 2009 года об изменении климата и Канаде.Дж. Дэвид Хьюз, геолог из Геологической службы Канады, написал об общем энергетическом пакете для ветряных турбин, перспектива, которая включает, сколько энергии потребовалось для создания турбины, а не только энергии, которую она вырабатывала, когда она работала.

«Вопрос в том, как долго ветряная мельница должна вырабатывать энергию, прежде чем она создаст больше энергии, чем потребовалось для ее создания?» — написал Хьюз.

Хьюз сосредоточил свое внимание на необходимости устанавливать турбины в местах, где дует ветер.

«На хорошей ветроэнергетической площадке срок окупаемости энергии может наступить через три года или меньше», — написал Хьюз.«В плохом месте окупаемости энергии может быть никогда».

Проверка фактов: Содержит ли план Байдена по инфраструктуре 3% налог на недвижимость?

Сообщение в Facebook пропустило это предложение и перешло к предупреждению Хьюза о том, что ветряная мельница в неправильном месте «может вращаться, пока не развалится, и никогда не будет генерировать столько энергии, сколько было вложено в ее строительство». (Здесь есть логическая поломка: если турбина вращается, значит, дует ветер, и турбина вырабатывает энергию.)

Кроме того, технология ветряных турбин сильно изменилась за последние 10 лет, поскольку инженеры разработали более эффективные модели и приобрели опыт размещения ветряных мельниц. Материал 2009 г. датирован.

История энергии жизненного цикла ветряной мельницы

На протяжении десятилетий исследователи оценивали все этапы превращения ветра в электричество. Исследование за исследованием показывают, что, когда все сказано и сделано, правильно размещенная турбина дает положительный результат.

В исследовании, проведенном датскими инженерами в 2016 году, рассматривались наземные и морские турбины, и было написано: «Было установлено, что срок окупаемости энергии составляет менее 1 года для всех технологий.«

Группа инженеров из Техаса проделала аналогичную работу и сообщила, что« сроки окупаемости выбросов CO2 и энергопотребления составляют от 6 до 14 и от 6 до 17 месяцев », а береговые сооружения имеют меньшую окупаемость.

Есть много этапов создания ветряной турбины. Сырье необходимо добыть, эти материалы нужно превратить в роторы и башни, а эти детали необходимо отправить. Требуется энергия для установки турбины и немного энергии А в самом конце — через 20-30 лет — его нужно разобрать и утилизировать.

Проверка фактов: Несут ли демократы ответственность за рост государственного долга?

Исследования показывают, что 86% всей энергии приходится на этап производства, хотя некоторые исследования показали более низкие проценты. Есть несколько ключевых переменных, в том числе срок службы ветряной турбины — производственные затраты учитываются, и чем дольше работает турбина, тем на большее количество лет распределяются эти затраты. Еще одна ключевая переменная — ветер. Турбины могут иметь прогнозируемую мощность, но ветер определяет, что происходит на самом деле.

В одном исследовании 2019 года инженеров Техасского университета в Арлингтоне учитывались скорости ветра от действующей ветряной электростанции в Техасе с 200 турбинами. Он подробно исследовал энергию, необходимую для перемещения компонентов турбины от места, где они были сделаны в Испании, на ветряную электростанцию ​​Lone Star около Абилина. Он также измерял энергию, необходимую для доставки сырья на заводы в Испании, где имело место производство. Ветер на ветряной ферме Lone Star меняется, и исследователи использовали эти данные, чтобы определить фактическую среднюю скорость ветра в течение года.

Они подсчитали, что турбина со сроком службы 20 лет будет полностью окупаться менее чем за шесть лет.

Наше постановление

Вирусное изображение гласит, что ветряная турбина «никогда не может генерировать столько энергии, сколько было вложено в ее строительство».

В заявлении была взята цитата из книги и искажено ее значение.

Каждое исследование жизненного цикла ветряных турбин показывает, что они производят больше энергии, чем требуется для их производства. В большинстве анализов период окупаемости энергии составляет около года.Согласно наиболее консервативной, реальной оценке, которую мы обнаружили, ветряные турбины в Техасе производили больше электроэнергии, чем потребовалось для их постройки примерно за шесть лет.

Мы оцениваем это утверждение как ложное.

Источники

Facebook, сообщение, 19 сентября 2021 г.

Facebook, сообщение, 16 сентября 2021 г.

Новости Сан-Патрисио, пожар на ветряной турбине в выходные дни оставляет больше вопросов, чем ответов об общественной безопасности, 10 марта 2020 г.

Национальная лаборатория возобновляемых источников энергии, Согласование оценки жизненного цикла ветра, июнь 2013 г.

Чистая энергия, Сравнительный анализ жизненного цикла высоких стальных башен ветряных турбин на суше, март 2020 г.

Прикладная энергия, Оценка жизненного цикла наземной и морской ветровой энергии — от теория к применению, окт.15, 2016

Устойчивость, воздействие на окружающую среду в течение жизненного цикла наземных и морских ветроэлектростанций в Техасе, 21 мая 2018 г.

Управление энергетической информации США, Annual Energy Outlook 2021, 3 февраля 2021 г.

Yale Climate Connections, What the carbon след ветряной турбины?, 30 июня 2021 г.

Чистые технологии и экологическая политика, Комплексная оценка жизненного цикла больших ветряных турбин в США, 20 февраля 2019 г.

Ветрогенератор что такое: Ветрогенераторы: принцип действия, типы, применение, эффективность работы — Альтер Эйр

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *