Регулятор яркости светодиодов: Простейший регулятор яркости светодиодов | Сделай сам своими руками

Содержание

Простейший регулятор яркости светодиодов | Сделай сам своими руками

Простейшая схема регулятора яркости светодиодов, представленная в этой статье, с успехом может быть применена в тюнинге автомобилей, ну и просто для повышения комфорта в машине в ночное время, например для освещения панели приборов, бардачков и так далее. Чтобы собрать это изделие, не нужно технических знаний, достаточно быть просто внимательным и аккуратным.

Напряжение 12 вольт считается полностью безопасным для людей. Если в работе использовать светодиодную ленту, то можно считать, что и от пожара вы не пострадаете, так как лента практически не греется и не может загореться от перегрева. Но аккуратность в работе нужна, что бы ни допустить короткого замыкания в смонтированном устройстве и как следствие пожара, а значит сохранить своё имущество.

Транзистор Т1, в зависимости от марки, может регулировать яркость светодиодов общей мощностью до 100 ватт, при условии, что он будет установлен на радиатор охлаждения соответствующей площади.

Работу транзистора Т1 можно сравнить с работой обыкновенного краника для воды, а потенциометра R1 – с его рукояткой. Чем больше откручиваешь – тем больше течёт воды. Так и здесь. Чем больше откручиваешь потенциометр – тем больше течёт ток. Закручиваешь – меньше течёт и меньше светят светодиоды.

Схема регулятора

Для этой схемы нам понадобятся не многочисленные детали.

Транзистор Т1. Можно применить КТ819 с любой буквой. КТ729. 2N5490. 2N6129. 2N6288. 2SD1761. BD293. BD663. BD705. BD709. BD953. Эти транзисторы нужно выбирать в зависимости от того, какую мощность светодиодов вы планируете регулировать. В зависимости от мощности транзистора находится и его цена.

Потенциометр R1 может быть любого типа сопротивлением от трёх до двадцати килом. Потенциометр сопротивлением три килоома лишь немного снизит яркость светодиодов. Десять килоом — убавит почти до нуля. Двадцать – будет регулировать со средины шкалы. Выбирайте, что вам подходит больше.

Если вы будете использовать светодиодную ленту, то вам не придётся заморачиваться с расчётом гасящего сопротивления (на схеме R2 и R3) по формулам, потому что эти сопротивления уже вмонтированы в ленту при изготовлении и всё, что нужно, это подключить её к напряжению 12 вольт. Только нужно купить ленту именно на напряжение 12 вольт. Если подключаете ленту, то сопротивления R2 и R3 исключить.

Выпускают так же светодиодные сборки, рассчитанные на питание 12 вольт, и светодиодные лампочки для автомобилей. Во всех этих устройствах при изготовлении встраивают гасящие резисторы или драйверы питания и их напрямую подключают к бортовой сети машины. Если вы в электронике делаете только первые шаги, то лучше воспользоваться именно такими устройствами.

Итак, с компонентами схемы мы определились, пора приступать к сборке.

Прикручиваем на болтик транзистор к радиатору охлаждения через теплопроводящую изолирующую прокладку (чтобы не было электрического контакта радиатора с бортовой сетью автомобиля, во избежание короткого замыкания).

Нарезаем провод на куски нужной длинны.

Зачищаем от изоляции и лудим оловом.

Зачищаем контакты светодиодной ленты.

Припаиваем провода к ленте.

Защищаем оголённые контакты при помощи клеевого пистолета.

Припаиваем провода к транзистору и изолируем из термоусадочным кембриком.

Припаиваем провода к потенциометру и изолируем их термоусадочным кембриком.

Собираем схему с применением контактной колодки.

Подключаем к аккумулятору и опробуем в работе на разных режимах.

Всё работает хорошо.

Смотрите видео работы регулятора

Регулировка яркости светодиодов

Если упустить подробности и объяснения, то схема регулировки яркости светодиодов предстанет в самом простом виде. Такое управление отлично от метода ШИМ, который мы рассмотрим чуть позже.
Итак, элементарный регулятор будет включать в себя всего четыре элемента:

  • блок питания;
  • стабилизатор;
  • переменный резистор;
  • непосредственно лампочка.

И резистор, и стабилизатор можно купить в любом радиомагазине. Подключаются они точно так, как показано на схеме. Отличия могут заключаться в индивидуальных параметрах каждого элемента и в способе соединения стабилизатора и резистора (проводами или пайкой напрямую).

Собрав своими руками такую схему за несколько минут, вы сможете убедиться, что меняя сопротивление, то есть, вращая ручку резистора, вы будете осуществлять регулировку яркости лампы.

В показательном примере аккумулятор берут на 12 Вольт, резистор на 1 кОм, а стабилизатор используют на самой распространенной микросхеме Lm317. Схема хороша тем, что помогает нам сделать первые шаги в радиоэлектронике. Это аналоговый способ управления яркость. Однако он не подойдет для приборов, требующих более тонкой регулировки.

Необходимость в регуляторах яркости

Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.

  • Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
  • Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
  • Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
  • Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.

В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.

ШИМ управление

Выходом из, казалось бы, сложной ситуации стало ШИМ управление (широтно-импульсная модуляция). Ток на светодиод подается импульсами. Причем значение его либо ноль, либо номинальное – самое оптимальное для свечения. Получается, что светодиод периодически то загорается, то гаснет. Чем больше время свечении, тем ярче, как нам кажется, светит лампа. Чем меньше время свечения, тем лампочка светит тусклее. В этом и состоит принцип ШИМ.

Управлять яркими светодиодами и светодиодными лентами можно непосредственно с помощью мощных МОП-транзисторов или, как их еще называют, MOSFET. Если же требуется управлять одной-двумя маломощными светодиодными лампочками, то в роли ключей используют обычные биполярные транзисторы или подсоединяют светодиоды напрямую к выходам микросхемы.

Вращая ручку реостата R2, мы будет регулировать яркость свечения светодиодов. Здесь представлены светодиодные ленты (3 шт.), которые присоединили к одному источнику питания.

Зная теорию, можно собрать схему ШИМ устройства самостоятельно, не прибегая к готовым стабилизаторам и диммерам. Например, такую, как предлагается на просторах интернета.

NE555 – это и есть генератор импульсов, в котором все временные характеристики стабильны. IRFZ44N – тот самый мощный транзистор, способный управлять нагрузкой высокой мощности. Конденсаторы задают частоту импульсов, а к клеммам «выход» подсоединятся нагрузка.

Поскольку светодиод обладает малой инертностью, то есть, очень быстро загорается и гаснет, то метод ШИМ регулирования является оптимальным для него.

Готовые к использованию регуляторы яркости

Регулятор, который продается в готовом виде для светодиодных ламп, называются диммером. Частота импульсов, создавая им, достаточно велика для того, чтобы мы не чувствовали мерцания. Благодаря ШИМ контролеру осуществляется плавная регулировка, позволяющая добиваться максимальной яркости свечения или угасания лампы.

Встраивая такой диммер в стену, можно пользоваться им, как обычным выключателем. Для исключительно удобства регулятор яркости светодиодов может управляться радио пультом.

Способность ламп, созданных на основе светодиодов, менять свою яркость открывает большие возможности для проведения световых шоу, создания красивой уличной подсветки. Да и обычным карманным фонариком становится значительно удобнее пользоваться, если есть возможность регулировать интенсивность его свечения.

Регулятор яркости светодиодов


Простейший регулятор яркости светодиодов

Простейшая схема регулятора яркости светодиодов, представленная в этой статье, с успехом может быть применена в тюнинге автомобилей, ну и просто для повышения комфорта в машине в ночное время, например для освещения панели приборов, бардачков и так далее. Чтобы собрать это изделие, не нужно технических знаний, достаточно быть просто внимательным и аккуратным.Напряжение 12 вольт считается полностью безопасным для людей. Если в работе использовать светодиодную ленту, то можно считать, что и от пожара вы не пострадаете, так как лента практически не греется и не может загореться от перегрева. Но аккуратность в работе нужна, что бы ни допустить короткого замыкания в смонтированном устройстве и как следствие пожара, а значит сохранить своё имущество.Транзистор Т1, в зависимости от марки, может регулировать яркость светодиодов общей мощностью до 100 ватт, при условии, что он будет установлен на радиатор охлаждения соответствующей площади.Работу транзистора Т1 можно сравнить с работой обыкновенного краника для воды, а потенциометра R1 – с его рукояткой. Чем больше откручиваешь – тем больше течёт воды. Так и здесь. Чем больше откручиваешь потенциометр – тем больше течёт ток. Закручиваешь – меньше течёт и меньше светят светодиоды.

Схема регулятора

Для этой схемы нам понадобятся не многочисленные детали.Транзистор Т1. Можно применить КТ819 с любой буквой. КТ729. 2N5490. 2N6129. 2N6288. 2SD1761. BD293. BD663. BD705. BD709. BD953. Эти транзисторы нужно выбирать в зависимости от того, какую мощность светодиодов вы планируете регулировать. В зависимости от мощности транзистора находится и его цена.Потенциометр R1 может быть любого типа сопротивлением от трёх до двадцати килом. Потенциометр сопротивлением три килоома лишь немного снизит яркость светодиодов. Десять килоом — убавит почти до нуля. Двадцать – будет регулировать со средины шкалы. Выбирайте, что вам подходит больше.Если вы будете использовать светодиодную ленту, то вам не придётся заморачиваться с расчётом гасящего сопротивления (на схеме R2 и R3) по формулам, потому что эти сопротивления уже вмонтированы в ленту при изготовлении и всё, что нужно, это подключить её к напряжению 12 вольт. Только нужно купить ленту именно на напряжение 12 вольт. Если подключаете ленту, то сопротивления R2 и R3 исключить.Выпускают так же светодиодные сборки, рассчитанные на питание 12 вольт, и светодиодные лампочки для автомобилей. Во всех этих устройствах при изготовлении встраивают гасящие резисторы или драйверы питания и их напрямую подключают к бортовой сети машины. Если вы в электронике делаете только первые шаги, то лучше воспользоваться именно такими устройствами.Итак, с компонентами схемы мы определились, пора приступать к сборке.Прикручиваем на болтик транзистор к радиатору охлаждения через теплопроводящую изолирующую прокладку (чтобы не было электрического контакта радиатора с бортовой сетью автомобиля, во избежание короткого замыкания). Нарезаем провод на куски нужной длинны.Зачищаем от изоляции и лудим оловом.Зачищаем контакты светодиодной ленты.Припаиваем провода к ленте.Защищаем оголённые контакты при помощи клеевого пистолета.Припаиваем провода к транзистору и изолируем из термоусадочным кембриком.Припаиваем провода к потенциометру и изолируем их термоусадочным кембриком.Собираем схему с применением контактной колодки.Подключаем к аккумулятору и опробуем в работе на разных режимах.Всё работает хорошо.

Смотрите видео работы регулятора

sdelaysam-svoimirukami.ru

Схема ШИМ-регулятора яркости светодиодов для сборки своими руками

С микросхемой NE555 (аналог КР1006) знаком каждый радиолюбитель. Её универсальность позволяет конструировать самые разнообразные самоделки: от простого одновибратора импульсов с двумя элементами в обвязке до многокомпонентного модулятора. В данной статье будет рассмотрена схема включения таймера в режиме генератора прямоугольных импульсов с широтно-импульсной регулировкой.

С развитием мощных светодиодов NE555 снова вышла на арену в роли регулятора яркости (диммера), напомнив о своих неоспоримых преимуществах. Устройства на её основе не требуют глубоких знаний электроники, собираются быстро и работают надёжно.

Известно, что управлять яркостью светодиода можно двумя способами: аналоговым и импульсным. Первый способ предполагает изменение амплитудного значения постоянного тока через светодиод. Такой способ имеет один существенный недостаток — низкий КПД. Второй способ подразумевает изменение ширины импульсов (скважности) тока с частотой от 200 Гц до нескольких килогерц. На таких частотах мерцание светодиодов незаметно для человеческого глаза. Схема ШИМ-регулятора с мощным выходным транзистором показана на рисунке. Она способна работать от 4,5 до 18 В, что свидетельствует о возможности управления яркостью как одного мощного светодиода, так и целой светодиодной лентой. Диапазон регулировки яркости колеблется от 5 до 95%. Устройство представляет собой доработанную версию генератора прямоугольных импульсов. Частота этих импульсов зависит от ёмкости C1 и сопротивлений R1, R2 и определяется по формуле: f=1/(ln2*(R1+2*R2)*C1), Гц

Принцип действия электронного регулятора яркости заключается в следующем. В момент подачи напряжения питания начинает заряжаться конденсатор по цепи: +Uпит – R2 – VD1 –R1 –C1 – -Uпит. Как только напряжение на нём достигнет уровня 2/3Uпит откроется внутренний транзистор таймера и начнется процесс разрядки. Разряд начинается с верхней обкладки C1 и далее по цепи: R1 – VD2 –7 вывод ИМС – -Uпит. Достигнув отметки 1/3Uпит транзистор таймера закроется и C1 вновь начнет набирать ёмкость. В дальнейшем процесс повторяется циклически, формируя на выводе 3 прямоугольные импульсы.

Изменение сопротивления подстроечного резистора приводит к уменьшению (увеличению) времени импульса на выходе таймера (вывод 3), и как следствие, уменьшается (увеличивается) среднее значение выходного сигнала. Сформированная последовательность импульсов через токоограничивающий резистор R3 поступает на затвор VT1, который включен по схеме с общим истоком. Нагрузка в виде светодиодной ленты или последовательно включенных мощных светодиодов включается в разрыв цепи стока VT1.

В данном случае установлен мощный MOSFET транзистор с максимальным током стока 13А. Это позволяет управлять свечением светодиодной ленты длиной в несколько метров. Но при этом транзистору может потребоваться теплоотвод.

Блокирующий конденсатор C2 исключает влияние помех, которые могут возникать по цепи питания в моменты переключения таймера. Величина его ёмкости может быть любой в пределах 0,01-0,1 мкФ.

Плата и детали сборки регулятора яркости

Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.

Плата в файле Sprint Layout 6.0: reguljator-jarkosti.lay6

После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.

  • DA1 – ИМС NE555;
  • VT1 – полевой транзистор IRF7413;
  • VD1,VD2 – 1N4007;
  • R1 – 50 кОм, подстроечный;
  • R2, R3 – 1 кОм;
  • C1 – 0,1 мкФ;
  • C2 – 0,01 мкФ.

Заказать готовую сборку от автора можно здесь.

Практические советы

Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.

Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.

Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.

ledjournal.info

Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория

Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.

Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.

Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.

С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.

Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».

В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.

Теория

Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.

Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.

Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.

Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.

Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.

Отсюда следует:

Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.

Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.

Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.

Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.

Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы

Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.

Принцип действия:

Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:

R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.

Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.

Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.

Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.

Расчёт выходного тока достаточно прост:

Получается достаточно компактное решение:

Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:

P=Uвх-Uвых/I

Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.

Способы регулирования яркости: ШИМ-регулировка

ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.

При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).

Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.

Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:

А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.

Как регулировать яркость светодиодных ламп на 220В

Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.

Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.

Почему нельзя диммировать светодиодные лампы 220В

Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.

Различают такие диммеры по фронту работы:

1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:

2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.

Отсюда следует:

Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи. 

Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.

Регулировка яркости светодиодных ламп – рациональное решение 12В

Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.

Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.

Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».

Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.

Вот пример использования такого решения: 

Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.

Заключение

Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.

Алексей Бартош

electrik.info

Принцип регулировки яркости светодиодов

Если упустить подробности и объяснения, то схема регулировки яркости светодиодов предстанет в самом простом виде. Такое управление отлично от метода ШИМ, который мы рассмотрим чуть позже.Итак, элементарный регулятор будет включать в себя всего четыре элемента:

  • блок питания;
  • стабилизатор;
  • переменный резистор;
  • непосредственно лампочка.

И резистор, и стабилизатор можно купить в любом радиомагазине. Подключаются они точно так, как показано на схеме. Отличия могут заключаться в индивидуальных параметрах каждого элемента и в способе соединения стабилизатора и резистора (проводами или пайкой напрямую).

Собрав своими руками такую схему за несколько минут, вы сможете убедиться, что меняя сопротивление, то есть, вращая ручку резистора, вы будете осуществлять регулировку яркости лампы.

В показательном примере аккумулятор берут на 12 Вольт, резистор на 1 кОм, а стабилизатор используют на самой распространенной микросхеме Lm317. Схема хороша тем, что помогает нам сделать первые шаги в радиоэлектронике. Это аналоговый способ управления яркость. Однако он не подойдет для приборов, требующих более тонкой регулировки.

Необходимость в регуляторах яркости

Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.

  • Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
  • Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
  • Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
  • Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.

В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.

ШИМ управление

Выходом из, казалось бы, сложной ситуации стало ШИМ управление (широтно-импульсная модуляция). Ток на светодиод подается импульсами. Причем значение его либо ноль, либо номинальное – самое оптимальное для свечения. Получается, что светодиод периодически то загорается, то гаснет. Чем больше время свечении, тем ярче, как нам кажется, светит лампа. Чем меньше время свечения, тем лампочка светит тусклее. В этом и состоит принцип ШИМ.

Управлять яркими светодиодами и светодиодными лентами можно непосредственно с помощью мощных МОП-транзисторов или, как их еще называют, MOSFET. Если же требуется управлять одной-двумя маломощными светодиодными лампочками, то в роли ключей используют обычные биполярные транзисторы или подсоединяют светодиоды напрямую к выходам микросхемы.

Вращая ручку реостата R2, мы будет регулировать яркость свечения светодиодов. Здесь представлены светодиодные ленты (3 шт.), которые присоединили к одному источнику питания.

Зная теорию, можно собрать схему ШИМ устройства самостоятельно, не прибегая к готовым стабилизаторам и диммерам. Например, такую, как предлагается на просторах интернета.

NE555 – это и есть генератор импульсов, в котором все временные характеристики стабильны. IRFZ44N – тот самый мощный транзистор, способный управлять нагрузкой высокой мощности. Конденсаторы задают частоту импульсов, а к клеммам «выход» подсоединятся нагрузка.

Поскольку светодиод обладает малой инертностью, то есть, очень быстро загорается и гаснет, то метод ШИМ регулирования является оптимальным для него.

Готовые к использованию регуляторы яркости

Регулятор, который продается в готовом виде для светодиодных ламп, называются диммером. Частота импульсов, создавая им, достаточно велика для того, чтобы мы не чувствовали мерцания. Благодаря ШИМ контролеру осуществляется плавная регулировка, позволяющая добиваться максимальной яркости свечения или угасания лампы.

Встраивая такой диммер в стену, можно пользоваться им, как обычным выключателем. Для исключительно удобства регулятор яркости светодиодов может управляться радио пультом.

Способность ламп, созданных на основе светодиодов, менять свою яркость открывает большие возможности для проведения световых шоу, создания красивой уличной подсветки. Да и обычным карманным фонариком становится значительно удобнее пользоваться, если есть возможность регулировать интенсивность его свечения.

le-diod.ru

Регулировка яркости светодиодов в автомобиле

На чтение 18 мин Просмотров 362 Опубликовано

Помогите с сайтом или прогой, как в авто уменьшить яркость светодиодов или вообще может регулятор какой поставить… или готовые продают. Светодиодная лента рассчитана, наверное, на 12в. А в машине на рабочем двигателе до 14.4В бывает. Один светодиод сгорел, да и ярко очень светят, хочется потусклее.

Recommendations

видел такие, за 50р можно попроще купить. Я сделал проще, взял старый СССР резистор img12.nnm.me/9/6/c/f/1/19…7fe9f8e247584d91da1b2.jpg и подобрал по сопротивлению нужную мне яркость. Резистор не грелся, так и продал машину.

да я б не сказал что и дорого_)). поставил 2 штуки и забыл, да и с таблом, необычно будет_)))

Поставь стабилизатор с регулировкой и все, на основе КРЕНки, резистор не вздумай ставить, только дебилы так делают, резистор греется, напряжение не стабильно, резистор напряжение не уменьшает, а лишь ограничивает силу тока, и соответственно тебе бдет нужен ох.енно мощный резистор, а еще в бортовой сети автомобиль дохрена помех и наводок, а светодиоды этого боятся…
Схем валом, деталей минимум, паяльник в руки и бегом…
С уважением…

Понятно, буду стабилизатор с регулятором мастерить.

А переменный резистор в разрыв если поставить? + или — резать. На сколько ом переменник брать? Или Стабилизатор все же надо. Длина ленточки у меня 5см, стоит в ручке скоростей. Светит красным очень ярко, хочу тусклее 🙂

Самый толковый комент выше, добавить нечего! 🙂

Самый простой способ — еще больше ограничить ток через светодиоды, поставив последовательно еще резистор (от 100 Ом, подберешь по яркости сам).
Более правильный — ограничить напряжение 12ю вольтами, поставив например копеечную детальку-стабилизатор LM7812. Но если лента длинная, то деталька будет греться как утюг.
Самый правильный, который позволит и яркость как хочешь менять — купить какой-то ШИМ-контроллер на том же ebay.

ШИМ от перегорания это спасет. Импульсы — то все равно 14 вольтовые будут. Так что реально лучше переменный резистор поставить.

импульсы будут такие, какой шим-контроллер будет. будет в нем стабилизатор — не будет никаких 14 вольт

Ну тогда уточнять надо, что понимать под ШИМом, простой регулятор яркости или импульсный стабилизатор (тока, напряжения, не важно) на выходе которого обычное напряжение а ШИМ присутствует только внутри схемы. Контроллеры RGB ленты, например, ничего не стабилизируют, а, тупо, нарезают на импульсы то напряжение, которое им подашь.

контроллеры лент, как и любые другие ШИМ-контроллеры не «нарезают на импульсы напряжение которое им подашь» =) есть контроллеры со стабилизированным напряжением +12, есть +5, есть и «что на входе, то и на выходе».
«плюс» никто в шим-контроллерах не трогает, а как вы называете «нарезают» всегда общий. так повторюсь, есть контроллеры со стабилизированным напряжением 12В, которые ШИМом позволяют регулировать яркость в пределах от 0% до 100%.
то, что вы мои слова приписали к импульсному стабилизатору — ваша ошибка. я что написал, то и имел ввиду

Отчасти я не прав. Тогда зайду из далека
1. ШИМ контроллер вообще абстрактное устройство. Вы-же не называете ШИМ контроллером блок питания своего компьютера, например.
2. Здесь на сайте чуть больше чем дохрена «спецов» по «правильному» питанию светодиодов (тот-же krasher). И чаще всего под ШИМ стабилизатором (контроллером или еще чем-то) понимают как раз то, что последовательно с нагрузкой стоит ключ, который, тупо, моргает регулируя яркость светодиодов. Понятно, что ни о какой стабилизации речь не идет. Согласны?
3. И вы тоже рекомендуете человеку (дословно) «купить какой-то ШИМ-контроллер». Из этой фразы можно понять что угодно от ШИМ регулятора яркости до перестраиваемого импульсного источника питания.
4. Я знаю, что плюс не трогают (хотя можно и его), а вы знаете, почему трогают именно минус? (я знаю)
5. Так все таки, чем вам не нравится фраза, что ШИМ регулятор нарезает напряжение? Именно это он и делает.

Гм
Считаю наш спор — он тут без смысла и ни к чему =)
Оба подкованные в этих вопросах и говорим об одном и том же немного разными словами. Прекращаем? =)

Отчасти я не прав. Тогда зайду из далека
1. ШИМ контроллер вообще абстрактное устройство. Вы-же не называете ШИМ контроллером блок питания своего компьютера, например.
2. Здесь на сайте чуть больше чем дохрена «спецов» по «правильному» питанию светодиодов (тот-же krasher). И чаще всего под ШИМ стабилизатором (контроллером или еще чем-то) понимают как раз то, что последовательно с нагрузкой стоит ключ, который, тупо, моргает регулируя яркость светодиодов. Понятно, что ни о какой стабилизации речь не идет. Согласны?
3. И вы тоже рекомендуете человеку (дословно) «купить какой-то ШИМ-контроллер». Из этой фразы можно понять что угодно от ШИМ регулятора яркости до перестраиваемого импульсного источника питания.
4. Я знаю, что плюс не трогают (хотя можно и его), а вы знаете, почему трогают именно минус? (я знаю)
5. Так все таки, чем вам не нравится фраза, что ШИМ регулятор нарезает напряжение? Именно это он и делает.

«4. Я знаю, что плюс не трогают (хотя можно и его), а вы знаете, почему трогают именно минус? (я знаю)»
А для меня можно истолковать? Я чет то ли не поспал, то ли просто не понимаю. Почему?

а если один подох, то и остальные в этой последовательности быстренько помрут

вот и я про то… жду следуещего =)

стабилизатор + переменный резстор тебе в помощь

как собрать самый простой стабилизатор?

покупаешь 7812 стабилизатор на 1.5 Ампера и два конденсатора и все она обвязка www.instructables.com/fil…6NYVQUF3GAG1N2.MEDIUM.jpg

поддерживаю выше сказанное

+100500 остальное шаманство

да оно и при обычном стабилизаторе 7812 живет нормально

заказывать не хочется, или самому спаять или готовое купить в москве.

он на сколько расчитан? тоже поставил светодиоды в задние фонари, вообщем получилось 50 диодов, где то около метра в длину вообщем, если разбить пополам, поставить 2 штуки, норм будет, ? принцип работы его в том что он тупо понижает напругу после себя до нужного значения, а остальное напряжение преобразует в тепло за счет транзистора, ? я правильно понимаю?_)))

это импульсный преобразователь напряжения, КПД где-то 90%, т.е. он не греется практически.
расчитан на 3А по току
но я бы больше двух не нагружал…

хм… слабовато. на габариты задние получается уже не кинешь? вряд ли там 2 ампера подается… побольше… че то не вдавался в подробности

это импульсный преобразователь напряжения, КПД где-то 90%, т.е. он не греется практически.
расчитан на 3А по току
но я бы больше двух не нагружал…

разве что поставить 2 преобразователя, на левую и правую цепь

Светодиодная лента рассчитана ровно на 14 вольт. А яркость просто уменьшить-поставь резистор, можно переменный.

переменный резистор не будет греться? В ленте один диод сгорел, брак что ли попал…Лента не из дешевых влагозащитная 300р метр

надо подобрать по мощности, смотря сколько метров ленты и сколько светодиодов

ниже написал, лента 5см. Светодиодов 5-6 наверное…

там меньше ватта потребление, практически любой подойдет)

не хочу спалить машину=) подключены они у меня от ДХО. А теперь везде нужно ездить с ДХО

ты же не ДХО резистором замыкать будешь, а отдельно идущую от них цепь, так что всё норм будет)

я соединяю на подсветку прикуривателя. Включаю габариты, загораются ДХО, подсветка панели и прикуривателя.

ну вот, берешь кидаешь провод на + прикуривателя, потом к нему резистор, далее на + ленты. и от ленты на прикуривателя.

переменный резистор не будет греться? В ленте один диод сгорел, брак что ли попал…Лента не из дешевых влагозащитная 300р метр

и эта из дешевых?
у нас таких цен за метр и не слышали

а какие цены? На митино метр не продают, все от 5 метров. А метр нашел за 300р, взял полметра.

у нас самая дешовая-550
простое китайское гавно по170

А многие наоборот пишут, «купил ленту за 100р» .Что то я таких цен на радиорынке Митино не видел…

можно переменный резистор поставить — тогда будет возможность регулировать яркость)

Если упустить подробности и объяснения, то схема регулировки яркости светодиодов предстанет в самом простом виде. Такое управление отлично от метода ШИМ, который мы рассмотрим чуть позже.
Итак, элементарный регулятор будет включать в себя всего четыре элемента:

  • блок питания;
  • стабилизатор;
  • переменный резистор;
  • непосредственно лампочка.

И резистор, и стабилизатор можно купить в любом радиомагазине. Подключаются они точно так, как показано на схеме. Отличия могут заключаться в индивидуальных параметрах каждого элемента и в способе соединения стабилизатора и резистора (проводами или пайкой напрямую).

Собрав своими руками такую схему за несколько минут, вы сможете убедиться, что меняя сопротивление, то есть, вращая ручку резистора, вы будете осуществлять регулировку яркости лампы.

В показательном примере аккумулятор берут на 12 Вольт, резистор на 1 кОм, а стабилизатор используют на самой распространенной микросхеме Lm317. Схема хороша тем, что помогает нам сделать первые шаги в радиоэлектронике. Это аналоговый способ управления яркость. Однако он не подойдет для приборов, требующих более тонкой регулировки.

Необходимость в регуляторах яркости

Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.

  • Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
  • Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
  • Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
  • Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.

В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.

ШИМ управление

Выходом из, казалось бы, сложной ситуации стало ШИМ управление (широтно-импульсная модуляция). Ток на светодиод подается импульсами. Причем значение его либо ноль, либо номинальное – самое оптимальное для свечения. Получается, что светодиод периодически то загорается, то гаснет. Чем больше время свечении, тем ярче, как нам кажется, светит лампа. Чем меньше время свечения, тем лампочка светит тусклее. В этом и состоит принцип ШИМ.

Управлять яркими светодиодами и светодиодными лентами можно непосредственно с помощью мощных МОП-транзисторов или, как их еще называют, MOSFET. Если же требуется управлять одной-двумя маломощными светодиодными лампочками, то в роли ключей используют обычные биполярные транзисторы или подсоединяют светодиоды напрямую к выходам микросхемы.

Вращая ручку реостата R2, мы будет регулировать яркость свечения светодиодов. Здесь представлены светодиодные ленты (3 шт.), которые присоединили к одному источнику питания.

Зная теорию, можно собрать схему ШИМ устройства самостоятельно, не прибегая к готовым стабилизаторам и диммерам. Например, такую, как предлагается на просторах интернета.

NE555 – это и есть генератор импульсов, в котором все временные характеристики стабильны. IRFZ44N – тот самый мощный транзистор, способный управлять нагрузкой высокой мощности. Конденсаторы задают частоту импульсов, а к клеммам «выход» подсоединятся нагрузка.

Поскольку светодиод обладает малой инертностью, то есть, очень быстро загорается и гаснет, то метод ШИМ регулирования является оптимальным для него.

Готовые к использованию регуляторы яркости

Регулятор, который продается в готовом виде для светодиодных ламп, называются диммером. Частота импульсов, создавая им, достаточно велика для того, чтобы мы не чувствовали мерцания. Благодаря ШИМ контролеру осуществляется плавная регулировка, позволяющая добиваться максимальной яркости свечения или угасания лампы.

Встраивая такой диммер в стену, можно пользоваться им, как обычным выключателем. Для исключительно удобства регулятор яркости светодиодов может управляться радио пультом.

Способность ламп, созданных на основе светодиодов, менять свою яркость открывает большие возможности для проведения световых шоу, создания красивой уличной подсветки. Да и обычным карманным фонариком становится значительно удобнее пользоваться, если есть возможность регулировать интенсивность его свечения.

Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.

Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.

Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.

С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.

Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».

В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.

Теория

Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.

Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.

Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.

Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.

Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.

Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.

Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.

Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.

Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.

Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы

Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.

Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:

R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.

Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.

Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.

Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.

Расчёт выходного тока достаточно прост:

Получается достаточно компактное решение:

Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:

Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.

Способы регулирования яркости: ШИМ-регулировка

ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.

При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).

Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.

Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:

А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.

Как регулировать яркость светодиодных ламп на 220В

Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.

Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.

Почему нельзя диммировать светодиодные лампы 220В

Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.

Различают такие диммеры по фронту работы:

1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:

2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.

Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.

Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.

Регулировка яркости светодиодных ламп – рациональное решение 12В

Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.

Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.

Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».

Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.

Вот пример использования такого решения:

Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.

Заключение

Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.

Регулятор яркости светодиодов. Схема ШИМ диммера

В данной статье описано как собрать простой, но эффективный регулятор яркости светодиодов основанный на ШИМ регулировании яркости (диммер) свечения  светодиодов.

Светодиоды  (светоизлучающие диоды) очень чувствительные компоненты. При превышение  питающего тока или напряжения выше допустимого значения может привести к выходу их из строя или же значительно сократить срок службы.

Обычно ток ограничивается с помощью резистора  последовательно подключенного к светодиоду, или же регулятором тока цепи (драйвером). Увеличение тока на светодиоде увеличивает его интенсивность свечения, а снижение тока уменьшает его.  Один из способов регулирования яркости свечения является использование переменного резистора (потенциометр)  для динамического  изменения яркости.

Но это только применимо к единичному светодиоду, поскольку даже в одной партии могут быть диоды с разной силой свечения и это повлияет на неравномерность свечения группы светодиодов.

Широтно-импульсная модуляция. Намного эффективнее метод регулирования яркости свечения путем применение широтно-импульсной модуляции (ШИМ). С ШИМ, группы светодиодов обеспечиваются рекомендуемым током, и в тоже время появляется возможность производить регулирование яркости за счет подачи питания с высокой частотой. Изменение периода вызывает изменение яркости.

Рабочий цикл можно представить как соотношение времени включения и выключения питания поступающего на светодиод. Допустим, если рассмотреть цикл в одну секунду и при этом в выключенном состоянии светодиод будет 0,1 сек., а во включенном 0,9 сек., то получается что свечение составит около 90% от номинального значения.

Описание шим регулятора яркости

Самый простой способ для достижения данного высокочастотного переключения – применение микросхемы таймера ne555, одой из самых распространенных и самых универсальных микросхем, когда-либо созданных. Схема ШИМ регулятора, показанная ниже предназначен для использования в качестве диммера для питания светодиодов (12 вольт)   или регулятора скорости вращения для двигателя постоянного тока на 12 В.

Набор для Arduino

Cтартовый набор Keyestudio Super с платой V4.0 для Arduino…

В данной схеме, сопротивление резисторов к светодиодам необходимо подобрать, чтобы обеспечить прямой ток в 25 мА. В результате общий ток трех линеек светодиодов составит 75мА. Транзистор должен быть рассчитан на ток не менее 75 мА, но лучше взять с запасом.

Эта схема  диммера осуществляет регулировку от 5% до 95%, но используя германиевые диоды вместо 1N4148, диапазон может быть расширен от 1% до 99% от номинального значения.

Источник: www.reuk.co.uk

Шим регулятор для светодиодов: широтно импульсный модулятор схема

Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория

Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.

Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.

Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.

С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.

Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».

В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.

Теория

Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.

Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.

Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.

Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.

Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.

Отсюда следует:

Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.

Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.

Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.

Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.

Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы

Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.

Принцип действия:

Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:

R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.

Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.

Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.

Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.

Расчёт выходного тока достаточно прост:

Получается достаточно компактное решение:

Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:

P=Uвх-Uвых/I

Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.

Способы регулирования яркости: ШИМ-регулировка

ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.

При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).

Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.

Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:

А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.

Как регулировать яркость светодиодных ламп на 220В

Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.

Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.

Почему нельзя диммировать светодиодные лампы 220В

Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.

Различают такие диммеры по фронту работы:

1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:

2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.

Отсюда следует:

Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.

Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.

Регулировка яркости светодиодных ламп – рациональное решение 12В

Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.

Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.

Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».

Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.

Вот пример использования такого решения:

Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.

Заключение

Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.

Алексей Бартош

Регулирование яркости светодиодов

В некоторых случаях, например, в фонариках или домашних осветительных приборах, возникает необходимость регулировать яркость свечения. Казалось бы, чего уж проще: достаточно изменить ток через светодиод, увеличив или уменьшив сопротивление ограничительного резистора. Но в этом случае на ограничительном резисторе будет расходоваться значительная часть энергии, что совсем недопустимо при автономном питании от батарей или аккумуляторов.

Кроме того, цвет свечения светодиодов будет изменяться: например, белый цвет при понижении тока меньше номинального (для большинства светодиодов 20мА) будет иметь несколько зеленоватый оттенок. Такое изменение цвета в ряде случаев совершенно ни к чему. Представьте себе, что эти светодиоды подсвечивают экран телевизора или компьютерного монитора.

Принцип ШИМ – регулирования

В этих случаях применяется ШИМ – регулирование (широтно — импульсное). Смысл его в том, что светодиод периодически зажигается и гаснет. При этом ток на протяжении всего времени вспышки остается номинальным, поэтому спектр свечения не искажается. Уж если светодиод белый, то зеленые оттенки появляться не будут.

К тому же при таком способе регулирования мощности потери энергии минимальны, КПД схем с ШИМ регулированием очень высок, достигает 90 с лишним процентов.

Принцип ШИМ – регулирования достаточно простой, и показан на рисунке 1. Различное соотношение времени зажженного и погашенного состояния на глаз воспринимается как различная яркость свечения: как в кино – отдельно показываемые поочередно кадры воспринимаются как движущееся изображение. Здесь все зависит от частоты проекции, о чем разговор будет чуть позже.

Рисунок 1. Принцип ШИМ – регулирования

На рисунке изображены диаграммы сигналов на выходе устройства управления ШИМ (или задающий генератор). Нулем и единицей обозначены логические уровни: логическая единица (высокий уровень) вызывает свечение светодиода, логический нуль (низкий уровень), соответственно, погасание.

Хотя все может быть и наоборот, поскольку все зависит от схемотехники выходного ключа, — включение светодиода может осуществляться низким уровнем а выключение, как раз высоким. В этом случае физически логическая единица будет иметь низкий уровень напряжения, а логический нуль высокий.

Другими словами, логическая единица вызывает включение какого-то события или процесса (в нашем случае засвечивание светодиода), а логический нуль должен этот процесс отключить. То есть не всегда высокий уровень на выходе цифровой микросхемы является ЛОГИЧЕСКОЙ единицей, все зависит от того, как построена конкретная схема. Это так, для сведения. Но пока будем считать, что ключ управляется высоким уровнем, и по-другому просто быть не может.

Частота и ширина управляющих импульсов

Следует обратить внимание на то, что период следования импульсов (или частота) остается неизменным. Но, в общем, частота импульсов на яркость свечения влияния не оказывает, поэтому, к стабильности частоты особых требований не предъявляется. Меняется лишь длительность (ШИРИНА), в данном случае, положительного импульса, за счет чего и работает весь механизм широтно-импульсной модуляции.

Длительность управляющих импульсов на рисунке 1 выражена в %%. Это так называемый «коэффициент заполнения» или, по англоязычной терминологии, DUTY CYCLE. Выражается отношением длительности управляющего импульса к периоду следования импульсов.

В русскоязычной терминологии обычно используется «скважность» – отношение периода следования к времени импульса. Таким образом если коэффициент заполнения 50%, то скважность будет равна 2. Принципиальной разницы тут нет, поэтому, пользоваться можно любой из этих величин, кому как удобней и понятней.

Здесь, конечно, можно было бы привести формулы для расчета скважности и DUTY CYCLE, но, чтобы не усложнять изложение, обойдемся без формул. В крайнем случае, закон Ома. Уж тут ничего не поделаешь: «Не знаешь закон Ома, сиди дома!». Если уж кого эти формулы заинтересуют, то их всегда можно найти на просторах Интернета.

Частота ШИМ для светорегулятора

Как было сказано чуть выше, особых требований к стабильности частоты импульсов ШИМ не предъявляется: ну, немного «плавает», да и ладно. Подобной нестабильностью частоты, кстати, достаточно большой, обладают ШИМ – регуляторы на базе интегрального таймера NE555, что не мешает их применению во многих конструкциях. В данном случае важно лишь, чтобы эта частота не стала ниже некоторого значения.

А какая должна быть частота, и насколько она может быть нестабильна? Не забывайте, что речь идет о светорегуляторах. В кинотехнике существует термин «критическая частота мельканий». Это частота, при которой отдельные картинки, показываемые друг за другом, воспринимаются как движущееся изображение. Для человеческого глаза эта частота составляет 48Гц.

Вот именно по этой причине частота съемки на кинопленке составляла 24кадр/сек (телевизионный стандарт 25кадр/сек). Для повышения этой частоты до критической в кинопроекторах применяется двухлопастной обтюратор (заслонка) дважды перекрывающий каждый показываемый кадр.

В любительских узкопленочных 8мм проекторах частота проекции составляла 16кадр/сек, поэтому обтюратор имел аж три лопасти. Тем же целям в телевидении служит тот факт, что изображение показывается полукадрами: сначала четные, а потом нечетные строки изображения. В результате получается частота мельканий 50Гц.

Работа светодиода в режиме ШИМ представляет собой отдельные вспышки регулируемой длительности. Чтобы эти вспышки воспринимались на глаз как непрерывное свечение, их частота должна быть никак не меньше критической. Выше сколько угодно, но ниже никак нельзя. Этот фактор следует учитывать при создании ШИМ – регуляторов для светильников.

Кстати, просто, как интересный факт: ученые каким-то образом определили, что критическая частота для глаза пчелы составляет 800Гц. Поэтому кинофильм на экране пчела увидит как последовательность отдельных изображений. Для того, чтобы она увидела движущееся изображение, частоту проекции потребуется увеличить до восьмисот полукадров в секунду!

Функциональная схема ШИМ – регулятора

Для управления собственно светодиодом используется транзисторный ключевой каскад. В последнее время наиболее широко для этой цели используются транзисторы MOSFET, позволяющие коммутировать значительную мощность (применение для этих целей обычных биполярных транзисторов считается просто неприличным).

Такая потребность, (мощный MOSFET — транзистор) возникает при большом количестве светодиодов, например, при использовании светодиодных лент, о которых будет рассказано чуть позже. Если же мощность невелика – при использовании одного – двух светодиодов, можно использовать ключи на маломощных биполярных транзисторах, а при возможности подключать светодиоды непосредственно к выходам микросхем.

На рисунке 2 показана функциональная схема ШИМ – регулятора. В качестве элемента управления на схеме условно показан резистор R2. Вращением его ручки можно в необходимых пределах изменять скважность управляющих импульсов, а, следовательно, яркость светодиодов.

Рисунок 2. Функциональная схема ШИМ – регулятора

На рисунке показаны три цепочки последовательно соединенных светодиодов с ограничивающими резисторами. Примерно такое же соединение применяется в светодиодных лентах. Чем длиннее лента, тем больше светодиодов, тем больше потребляемый ток.

Именно в этих случаях потребуются мощные регуляторы на транзисторах MOSFET, допустимый ток стока которых должен быть чуть больше тока, потребляемого лентой. Последнее требование выполняется достаточно легко: например, у транзистора IRL2505 ток стока около 100А, напряжение стока 55В, при этом, его размеры и цена достаточно привлекательны для использования в различных конструкциях.

Задающие генераторы ШИМ

В качестве задающего ШИМ – генератора может использоваться микроконтроллер (в промышленных условиях чаще всего), или схема, выполненная на микросхемах малой степени интеграции. Если в домашних условиях предполагается изготовить незначительное количество ШИМ – регуляторов, а опыта создания микроконтроллерных устройств нет, то лучше сделать регулятор на том, что в настоящее время оказалось под рукой.

Это могут быть логические микросхемы серии К561, интегральный таймер NE555, а также специализированные микросхемы, предназначенные для импульсных блоков питания. В этой роли можно заставить работать даже операционный усилитель, собрав на нем регулируемый генератор, но это уж, пожалуй, «из любви к искусству». Поэтому, далее будут рассмотрены только две схемы: самая распространенная на таймере 555, и на контроллере ИБП UC3843.

Схема задающего генератора на таймере 555

Рисунок 3. Схема задающего генератора

Эта схема представляет собой обычный генератор прямоугольных импульсов, частота которого задается конденсатором C1. Заряд конденсатора происходит по цепи «Выход – R2 – RP1- C1 – общий провод». При этом на выходе должно присутствовать напряжение высокого уровня, что равнозначно, что выход соединен с плюсовым полюсом источника питания.

Разряжается конденсатор по цепи «C1 – VD2 – R2 – Выход – общий провод» в то время, когда на выходе присутствует напряжение низкого уровня, — выход соединен с общим проводом. Вот эта разница в путях заряда – разряда времязадающего конденсатора и обеспечивает получение импульсов с регулируемой шириной.

Следует заметить, что диоды, даже одного типа, имеют разные параметры. В данном случае играет роль их электрическая емкость, которая изменяется под действием напряжения на диодах. Поэтому вместе с изменением скважности выходного сигнала меняется и его частота.

Главное, чтобы она не стала меньше критической частоты, о которой было упомянуто чуть выше. Иначе вместо равномерного свечения с различной яркостью будут видны отдельные вспышки.

Приблизительно (опять же виноваты диоды) частоту генератора можно определить по формуле, показанной ниже.

Частота генератора ШИМ на таймере 555.

Если в формулу емкость конденсатора подставить в фарадах, сопротивление в Омах, то результат должен получиться в герцах Гц: от системы СИ никуда не денешься! При этом подразумевается, что движок переменного резистора RP1 находится в среднем положении (в формуле RP1/2), что соответствует выходному сигналу формы меандр. На рисунке 2 это как раз та часть, где указана длительность импульса 50%, что равнозначно сигналу со скважностью 2.

Задающий генератор ШИМ на микросхеме UC3843

Его схема показана на рисунке 4.

Рисунок 4. Схема задающего генератора ШИМ на микросхеме UC3843

Микросхема UC3843 является управляющим ШИМ — контроллером для импульсных блоков питания и применяется, например, в компьютерных источниках формата ATX. В данном случае типовая схема ее включения несколько изменена в сторону упрощения. Для управления шириной выходного импульса на вход схемы подается регулирующее напряжение положительной полярности, то на выходе получается импульсный сигнал ШИМ.

В простейшем случае регулирующее напряжение можно подать с помощью переменного резистора сопротивлением 22…100КОм. При необходимости можно управляющее напряжение получать, например, с аналогового датчика освещенности, выполненного на фоторезисторе: чем темнее за окном, тем светлее в комнате.

Регулирующее напряжение воздействует на выход ШИМ, таким образом, что при его снижении ширина выходного импульса увеличивается, что вовсе не удивительно. Ведь исходное назначение микросхемы UC3843 — стабилизация напряжения блока питания: если выходное напряжение падает, а вместе с ним и регулирующее напряжение, то надо принимать меры (увеличивать ширину выходного импульса) для некоторого повышения выходного напряжения.

Регулирующее напряжение в блоках питания вырабатывается, как правило, с помощью стабилитронов. Чаще всего это TL431 или им подобные.

При указанных на схеме номиналах деталей частота генератора около 1КГц, и в отличие от генератора на таймере 555, она при изменении скважности выходного сигнала не «плавает» — забота о постоянстве частоты импульсных блоков питания.

Чтобы регулировать значительную мощность, например, светодиодная лента, к выходу следует подключить ключевой каскад на транзисторе MOSFET, как было показано на рисунке 2.

Можно было бы и побольше рассказать о ШИМ – регуляторах, но пока остановимся на этом, а в следующей статье рассмотрим различные способы подключения светодиодов. Ведь не все способы одинаково хороши, есть такие, которых следует избегать, да и просто ошибок при подключении светодиодов случается предостаточно.

Продолжение статьи: Хорошие и плохие схемы включения светодиодов

Борис Аладышкин

Диммер для светодиодной ленты 12 Вольт: виды, подключение

Яркость любого источника «светодиодного» света можно регулировать с помощью специального устройства — диммера. Продается он в любом магазине электротоваров, но перед покупкой лучше знать, что они представляют из себя, каких бывают видов, принцип работы, нюансы подключения. Эти знания позволят выбрать именно то, что нужно. Также разберемся, как сделать диммер своими руками.

Что это за регулятор такой волшебный?

Диммер для светодиодной ленты (он же светорегулятор) используется для регулировки яркости светодиодного освещения за счет изменения подаваемого напряжения или тока (в зависимости от способа). С его помощью можно в любой момент «приглушить» свет в помещении или сделать его очень ярким буквально одним нажатием кнопки.

Регулятор позволяет продлить срок службы светодиодной ленты, поскольку снижение интенсивности светового потока не дает светодиодам перегреваться, а ведь именно перегрев негативно влияет на продолжительность работы любых led-светильников.

Диммеры, используемые для ламп накаливания (статья про диммеры для led-ламп), не подходят для светодиодных лент из-за разного принципа работы.

Любой диммер подключается между самим светильником (лентой) и блоком питания. При этом нужно обязательно учитывать номинальное напряжение прибора – если блок питания рассчитан на 24в (или любое другое напряжение), с ним нельзя использовать диммер на 12в.

Кстати, самыми «популярными» в быту и наиболее широко используемыми считаются диммеры на 12 вольт, именно они используются для регулировки яркости светодиодных лент.

По способу управления диммеры подразделяются на:

  • Поворотные – самая простая модель, ничего лишнего. Регулировка яркости освещения производится путем поворота ручки.
  • Поворотно-нажимные – включаются нажатием на ручку, яркость регулируется ее вращением.
  • Клавишные – внешне напоминают обычный выключатель. Простое нажатие включает свет, удержание кнопки регулирует яркость.
  • Сенсорные диммеры не имеют в своей конструкции движущихся деталей, вместо них установлена сенсорная панель. В остальном принцип действия такого прибора особо ничем не отличается от более простых моделей.
  • С дистанционным управлением – регулировка осуществляется при помощи пульта.

Практически все регуляторы просты и удобны в эксплуатации, не имеют серьезных недостатков, но как  и многие электроприборы, не выносят перегрева и скачков напряжения в сети. Некоторые старые модели могут создавать электромагнитные помехи, в том числе мешать работе радио (у современных светорегуляторов этого недостатка нет).

Виды

Разновидностей диммеров выпускается великое множество. При желании такое устройство можно подобрать под любые задачи и потребности. В этой статье мы коротко расскажем лишь о некоторых популярных видах.

  1. Мини-диммеры отличаются компактными размерами и небольшим весом. При этом могут быть с кнопочным, сенсорным или дистанционным управлением. 
  2. Диммеры с аудио-входом позволяют не просто регулировать яркость света, но даже создавать эффект цветомузыки в автоматическом режиме.
  3. Диммеры для rgb-ленты. Rgb-лента отличается от обычной (монохромной) светодиодной «многоцветностью», то есть, такая лента содержит красные (red), зеленые (green) и синие (blue) диоды, что позволяет создавать различные цветовые эффекты. Ниже приводится простейшая схема подключения rgb-ленты к сети 220 вольт.
Внешний видСхема подключения

Видео

На видео интересный пример работы свето регулятора с аудио-входом. Реализована цветомузыка из светодиодной ленты RGB. Лента меняет цвета и уровень свечения в такт музыке.

Кстати: в обоих вышеописанных случаях применяются диммеры с контроллерами ( микроконтроллерами). Сам по себе диммер не способен работать по определенной программе – он служит только для изменения яркости диодов. Чтобы «заставить» светорегулятор менять яркость в соответствии с заданной схемой, применяются rgb и аудио — контроллеры.

Подключение к led-ленте

Несмотря на то, что для разных видов лент схемы подключения также будут разными, в любой схеме диммер с одной стороны подключается к блоку питания. Если лента монохромная, то ее подключение будет напрямую через диммер, если многоцветная, то в схеме добавится еще и контроллер – между диммером и непосредственно лентой (если только контроллер не объединен с регулятором изначально).

Иногда в схему включается еще и усилитель – если мощность подключаемых приборов превосходит значение мощности питающего элемента. Пример обычной схемы подключения светодиодной ленты с использованием диммера:

Диммер на микросхеме своими руками

Несмотря на то, что в продаже можно найти множество разновидностей диммеров, некоторые умельцы предпочитают собрать такие устройства самостоятельно. В качестве примера для сборки рассмотрим диммер на микросхеме, достаточно простой в настройке и обладающий функциями защиты.

Опорное напряжение на управляющем электроде создается при помощи резистора R2. Значение на выходе регулируется от 12в (максимальное) до любого минимального, вплоть до десятой доли вольта. Для оптимального охлаждения интегрального стабилизатора (КРЕН) необходима установка дополнительного радиатора, и это, пожалуй, единственный серьезный недостаток такого самодельного регулятора освещения.

Стоит ли использовать диммер для светодиодной ленты?

Однозначно – стоит. Установка такого устройства под силу даже непрофессионалу, но сам светорегулятор многократно расширяет функции и возможности led-ленты. Например, можно отказаться от большого количества светильников разной мощности, поскольку одна и та же лента будет светить с разной яркостью, заменяя и большую люстру, и маленький ночник.

Подобное освещение очень удобно в детской комнате – когда ребенок уснет, можно будет просто приглушить свет до минимума, не опасаясь ни за проводку, ни за то, что чадо проснется ночью в темноте и испугается.

Любителям домашних вечеринок однозначно придутся по душе световые эффекты, которые можно создать при помощи диммера с аудио-входом. И это лишь малая часть способов применения диммеров и светодиодных лент в обычных квартирах и домах.

Основы Arduino: настройка яркости светодиодов

Первоначально опубликовано 5 февраля 2020 г.

Содержание

  1. Введение
  2. Яркость не регулируется цифровым способом
  3. Изменение яркости светодиода с помощью цифрового выхода
  4. Регулировка яркости с помощью ШИМ
  5. Постепенное мигание светодиода
  6. Связанные статьи

Введение

Эта статья была переведена на английский язык и первоначально была опубликована для deviceplus.яп.

Device Plus представил множество приложений и примеров Arduino, но базовые знания по-прежнему важны, независимо от того, что вы делаете!
В этой статье мы познакомим вас с «ключевыми» основами электроники Arduino, позволив Arduino регулировать яркость светодиодов.

Вы можете легко включать и выключать светодиод между ВЫСОКИМ (5 В) и НИЗКИМ (0 В) состояниями, подключив его к цифровым выходным клеммам Arduino. Однако, поскольку цифровой выход может выводиться только в одном из двух состояний, вы не можете регулировать такие элементы управления, как яркость.
Вместо этого для этой цели можно использовать выход «ШИМ». ШИМ можно использовать для регулировки яркости светодиода путем многократного переключения между ВЫСОКИМ и НИЗКИМ состояниями.
В этой статье мы узнаем, как использовать ШИМ для регулировки яркости светодиода. Мы также узнаем, как написать программу, которая использует выход ШИМ для постепенного включения светодиода.

Яркость не регулируется цифровым способом

Как мы объясняли в прошлый раз, яркость светодиода меняется в зависимости от протекающего тока.Сравнивая резистор 330 Ом с резистором 10 кОм, подключенным для регулировки величины тока, подключенного к светодиоду, например, больший ток протекает через 330 Ом с меньшим сопротивлением, что заставляет светодиод светиться ярче. В качестве альтернативы, протекающий ток также изменяется, если вы изменяете напряжение источника питания, подключенного к светодиоду.

Если применяются 5 В и 3,3 В, 5 В делают светодиод ярче. Если вы хотите, чтобы светодиод светился еще ярче, вы либо «уменьшаете сопротивление», либо «увеличиваете напряжение», как объяснено в предыдущей формуле зависимости между током, протекающим через светодиод, и сопротивлением.

Однако цифровой выход Arduino имеет только два состояния: ВЫСОКИЙ (5 В) или НИЗКИЙ (0 В), что означает, что значения напряжения и сопротивления не могут быть изменены, даже если схема подключена как есть. Таким образом, яркость светодиода не может регулироваться. Хотя есть только два состояния выхода, ВЫСОКИЙ и НИЗКИЙ, яркость светодиода можно изменить с некоторой изобретательностью.

Изменение яркости светодиода с помощью цифрового выхода

Давайте изменим яркость светодиода, используя только цифровой выход.Яркость можно отрегулировать, заставив светодиод мигать. На самом деле управляйте светодиодом шаг за шагом, чтобы увидеть, как меняется яркость. Подключите светодиод к контакту 5 Arduino, как показано ниже:

.

Затем создайте программу, как показано ниже, и запишите ее в Arduino. Светодиод должен мигать с интервалом в одну секунду.

В программе светодиод загорается при «цифровой записи (LED_PIN, HIGH)» (строка 11) с выходом HIGH, а затем ожидает в течение времени, указанного «задержкой (ON_TIME)» (строка 12).Длительность указывается в миллисекундах; если вы укажете 1000, светодиод будет гореть в течение одной секунды.

Затем светодиод выключается при «цифровой записи (LED_PIN, LOW)» (строка 14) с выходом LOW, а затем остается выключенным на время, указанное «delay (OFF_TIME)» (строка 15). Светодиод мигает, повторяя эту программу.

Далее уменьшим время включения и выключения. Продолжительность включения можно изменить с помощью «const int ON_TIME» (строка 3), а продолжительность отключения можно изменить с помощью «const int OFF_TIME» (строка 4).Измените оба значения на «500» и напишите программу для проверки состояния светодиода. Скорость мигания должна увеличиться. По мере уменьшения значений до «250», «100», «75», «50» и т. д. мигание должно становиться быстрее. При значении около «10» светодиод горит постоянно. Если он мигает слишком быстро, человеческий глаз не успевает за ним уследить, в результате чего кажется, что свет горит постоянно.

Теперь давайте изменим продолжительность включения и выключения. Установите для «ON_TIME» и «OFF_TIME» значение «10».Далее последовательно меняем значение «ON_TIME» на «9», «8», «7»… «1», и проверяем состояние свечения светодиода. По мере уменьшения значения вы можете видеть, что светодиод становится темнее.

Светодиод выглядит темнее, потому что продолжительность свечения сокращается, а количество свечения уменьшается. Другими словами, вы можете регулировать яркость светодиода, изменяя «длительность освещения». Этот метод позволяет вам управлять яркостью светодиода с помощью цифрового выхода Arduino, оснащенного только функциями включения и выключения.

Регулировка яркости с помощью ШИМ

Как описано выше, вы можете управлять яркостью, регулируя соотношение ВЫСОКИЙ и НИЗКИЙ, заставляя светодиод мигать коротким циклом. Однако создавать собственную программу для контроля продолжительности мигания нецелесообразно. Если для обработки других программ требуется время, интервал мигания сместится, изменяя яркость.

Arduino обеспечивает ШИМ (широтно-импульсную модуляцию), который может периодически выводить ВЫСОКИЙ и НИЗКИЙ. Функция PWM, периодически переключающаяся между ВЫСОКИМ и НИЗКИМ с заданной скоростью, может использоваться для регулировки яркости светодиода, как описано ранее.

Однако выводы, которые можно использовать для ШИМ, фиксированы в Arduino. Выход ШИМ доступен только для контактов, которые имеют знак «~» рядом с номером (то есть 3, 5, 6, 9, 10 и 11). Обратите внимание, что другие контакты не поддерживают вывод ШИМ.

Преимущество ШИМ

заключается в стабильном выходе, не влияющем на работу программы, поскольку ШИМ генерируется на микрокомпьютере Arduino.
Теперь подключите светодиод к контакту 5, чтобы попробовать операцию. Заранее подключите светодиод, как в схеме, показанной ранее.
Затем напишите программу, как показано ниже, и перенесите ее в Arduino. Светодиод должен светиться немного тусклее.

Для вывода с ШИМ установите целевой вывод в режим вывода с помощью «pinMode()» (строка 6). Фактический вывод происходит с помощью «analogWrite()» (строка 10). Укажите номер целевого контакта, а затем установите соотношение HIGH в диапазоне от 0 до 255. «0» всегда выводит LOW, а «255» всегда выводит HIGH. «127» одинаково выводит как ВЫСОКИЙ, так и НИЗКИЙ.

В этой программе вы можете указать коэффициент ШИМ в «const int DUTY» (строка 3).Измените значение, чтобы увидеть, как меняется яркость.

Постепенное мигание светодиода

Выход с использованием ШИМ расширяет способ свечения светодиода. Теперь давайте постепенно изменим ШИМ, чтобы реализовать эффект постепенного увеличения яркости светодиода.

Напишите программу, как показано ниже

Приведенная выше программа сохраняет коэффициент ШИМ в переменной «i», используемой в функции loop(), чтобы она могла увеличивать значение, чтобы светодиод постепенно становился ярче.

Во время обработки (строка 14) значение увеличивается с шагом, заданным STEP, пока i не достигнет 255.Увеличенное значение выводится функцией AnalogWrite() (строка 15) для изменения яркости светодиода. Кроме того, ему предписывается ждать в течение времени, указанного параметром WAITTIME, каждый раз при изменении выхода ШИМ (строка 16).

Когда коэффициент ШИМ достигает 255, он уменьшается до тех пор, пока не достигнет 0 для постепенного затемнения светодиода (строки 21-25). Вы можете изменить скорость мигания, изменив значение WAITTIME (строка 3) или STEP (строка 4).

На этот раз мы научились управлять яркостью светодиода.До встречи в другой статье!

Связанные статьи

Всегда есть что узнать об Arduino! Взгляните на некоторые из наших других статей:

  1. Как создать генератор азбуки Морзе с помощью Arduino
  2. Как управлять освещением с помощью датчика внешней освещенности
  3. Регулятор громкости USB с Arduino

Яркость светодиодов и ШИМ — блог Digital View

В производстве дисплеев светодиоды используются в качестве источника света для ЖК-панелей и в качестве пикселей дисплея в светодиодных дисплеях прямого обзора, например видеостенах.Наиболее распространенным методом регулировки яркости этих светодиодов является метод, называемый широтно-импульсной модуляцией, обычно известный как ШИМ (вы увидите, что это упоминается во всех спецификациях моделей плат контроллеров Digital View).

Что такое ШИМ (широтно-импульсная модуляция)?

Как уже упоминалось, наиболее распространенным методом регулировки яркости светодиода, используемого в качестве подсветки (для ЖК-панелей) или в качестве основного компонента дисплея (для светодиодных дисплеев прямого обзора), является метод, известный как ШИМ (широтно-импульсная модуляция).

PWM — это метод изменения воспринимаемой и фактической яркости светодиода путем включения и выключения питания светодиода. Это делается очень быстро, поэтому заметного мерцания быть не должно, но изменение средней мощности изменит яркость.

Светодиод прямого обзора

Для светодиода прямого обзора, используемого в видеостене, светодиод является как источником света, так и пикселем изображения. Таким образом, пиксель будет скорректирован в соответствии с видеоданными, например, со скоростью 60 кадров в секунду (кадров в секунду), хотя распространены и другие частоты кадров, например, 24 кадра в секунду, 30 кадров в секунду, 120 кадров в секунду.ШИМ будет использоваться для регулировки яркости пикселя в соответствии с видеоданными. Вот простая диаграмма, которая иллюстрирует это на основе светодиода, работающего на частоте 3840 Гц (т.е. включается и выключается 3840 раз в секунду):

Приведенное выше является лишь примером, и частота записи светодиодов может быть другой, в зависимости от драйвера светодиодов.

ЖК-дисплей со светодиодной подсветкой

В типичной ЖК-панели, такой как телевизор, монитор или ноутбук, имеется светодиодная подсветка, которую пользователь регулирует по своему усмотрению.Обычно он не получает данные изображения, поэтому ШИМ предназначен исключительно для регулировки общей яркости. Однако с введением HDR и мини-светодиодов в качестве подсветки яркость светодиодов будет регулироваться в соответствии с изображением, возможно, не с тем же разрешением, но близко к нему.

Светодиод задней подсветки, скорее всего, будет работать на частоте от 100 Гц до 400 Гц, однако схема драйвера и светодиод обеспечивают гораздо более высокие частоты. Преимущество более высоких частот заключается в большей детализации регулировки яркости и имеет отношение к определенным приложениям, таким как затемнение при слабом освещении для ночного просмотра.

Примечания

  • ШИМ используется во многих других продуктах, таких как управление двигателем в робототехнике, а также для светодиодов, используемых в других приложениях, таких как автомобильные фары.
  • Еще одним методом регулировки яркости светодиодов является амплитудная модуляция.
  • Светодиоды могут работать на очень высоких частотах, например, на частоте 100 000 Гц.
  • Компания Applied Concepts (www.acipower.com), специалист по подсветке из США (www.acipower.com)

    Управление яркостью светодиодов с помощью Arduino, вместо того, чтобы просто быстро включать и выключать светодиоды с помощью digitalWrite(), мы можем определить уровень яркости светодиода, регулируя количество времени между состояниями включения и выключения каждого светодиода с помощью ШИМ (ширина импульса). модуляция).

    Если вы не знаете про ШИМ, то вкратце — ШИМ расшифровывается как широтно-импульсная модуляция, мы знаем, что светодиод — это диод и работает только в прямом направлении, но есть подкрутка, хотя работает в прямом направлении, но если я даю светодиод с меньшим напряжением будет казаться тусклым.

    То же самое, если я изменю этот уровень напряжения, то интенсивность светодиода также будет меняться. Проще говоря, светодиод получает цикл постоянного тока с различными рабочими циклами (период включения). См. рисунок

    ШИМ-сигналы разной скважности

    Только цифровые контакты 3, 5, 6, 9, 10 и 11 на обычной плате Arduino UNO могут использоваться для ШИМ .На плате Arduino они отмечены тильдой (~). Это означает, что эти контакты поддерживают PWM.

    Требуемое оборудование или компоненты для ШИМ в светодиодах с использованием Arduino

    С.Н. Компонент Количество
    1. Ардуино Уно 1
    2. Макет 1
    3. Светодиод 1
    4. Резистор 220 или 280 Ом 1

    КОНТРОЛЬНАЯ СХЕМА: УПРАВЛЕНИЕ ЯРКОСТЬЮ СВЕТОДИОДОВ С ИСПОЛЬЗОВАНИЕМ ARDUINO

    Схема подключения светодиода Arduino для ШИМ

    КОД ПРОГРАММИРОВАНИЯ ARDUINO: УПРАВЛЕНИЕ ЯРКОСТЬЮ СВЕТОДИОДА С ПОМОЩЬЮ ARDUINO

     интервал дел = 5;
    инт а = 0;
    
    недействительная установка () {
     pinMode(3, ВЫХОД); // Контакт управления светодиодом — 3, вывод с поддержкой ШИМ
    }
    
    недействительный цикл () {
     для (а = 0; а < 256; а++) {
     аналог записи (3, а);
     задержка(удалить);
     }
     для (а = 255; а >= 0; а--) {
     аналог записи (3, а);
     задержка(удалить);
     }
     задержка(200);
    }
     

    ОБЪЯСНЕНИЕ КОДА

    Сначала мы определяем две целочисленные переменные: del и a , и мы используем «del» для задержки и «a» в для цикла , чтобы изменять интенсивность светодиода.

     интервал дел = 5;
    инт а = 0;
     

    В настройках()

    Поскольку мы знаем, что контакт № 3 может поддерживать ШИМ, поэтому мы используем контакт № 3 в качестве вывода с помощью функции pinMode()

     void setup() { 
    /* Контакт управления светодиодом равен 3, контакт с поддержкой ШИМ */ pinMode(3, ВЫХОД); }

    В цикле()

    Чтобы создать ШИМ-сигнал, мы используем функцию AnalogWrite(x, y),
    , где x — цифровой вывод, а y — значение «рабочего цикла» в диапазоне от «0 до 255», где 0 означает 0% рабочего цикла. а 255 указывает на 100% рабочий цикл.

    1 st для цикла интенсивность или яркость светодиода начнет увеличиваться, начиная с 0 интенсивности, и после задержки в 5 миллисекунд интенсивность будет увеличиваться на 1 до максимальной интенсивности, равной 255.

    Затем этот цикл for полностью выполняется, и мы перейдем к нашей следующей инструкции, которая является еще одним циклом for

    .
     недействительный цикл () {
     для (а = 0; а < 256; а++) {
     аналог записи (3, а);
     задержка(удалить);
     } 

    В 2 и для шлейфа интенсивность светодиода начнет уменьшаться с интенсивности 255 и после задержки в 5 миллисекунд интенсивность будет уменьшаться на 1 до минимальной интенсивности, равной 0.

    Затем этот цикл for полностью выполняется, и мы переходим к нашей следующей инструкции, которая представляет собой задержку в 200 миллисекунд до нашего следующего цикла цикла void, и процесс продолжается

      для (а = 255; а >= 0; а--) {
     аналог записи (3, а);
     задержка(удалить);
     }
     задержка(200);
    } 

    И цикл void() выполняется непрерывно и следует тому же шаблону.


    ЧИТАТЬ СЛЕДУЮЩУЮ
    КАК УПРАВЛЯТЬ ВЫХОДОМ В ARDUINO или ВКЛЮЧАТЬ СВЕТОДИОД, ИСПОЛЬЗУЯ КНОПКУ В КАЧЕСТВЕ ВХОДА


    Управление яркостью светодиода с помощью Raspberry Pi

    Из этой статьи «Управление яркостью светодиода с помощью Raspberry Pi с помощью ШИМ» можно узнать, как яркостью светодиода можно управлять с помощью сигнала ШИМ.Здесь #PWM означает широтно-импульсную модуляцию. Это метод, который можно использовать для управления скоростью двигателя постоянного тока, яркостью светодиода или серводвигателем.

    Используемые элементы

    На изображении показан список необходимых компонентов. Давайте быстро взглянем на каждый из них.

    Все компоненты вместе

    Raspberry Pi 3 Model B+

    Raspberry Pi — это серия небольших одноплатных компьютеров. Здесь 3 Model B+ указывает поколение платы RPi.Raspberry Pi также пишется как RPI, RPi или Raspberry Pie. Raspberry Pi Model B+ имеет размер кредитной карты.

    Raspberry Pi 3 Модель B+

    Макетная плата:- Макетная плата представляет собой прямоугольную плату с небольшими отверстиями, которые используются для соединения элементов. Соединения не являются фиксированными и могут варьироваться. В макетной плате все отверстия на одной горизонтальной линии последовательно соединены друг с другом. Макетные доски изготавливаются из пластика и бывают всех форм, размеров и даже разных цветов. Наиболее распространенными размерами являются «полноразмерные», «половинные» и «мини-макеты».

    Хлебная плата

    Перемычки:- Перемычки используются для установления соединения между различными элементами схемы и платой #Raspberrypi. Есть два типа провода, мужской и женский. Штыревые провода имеют концы, которые можно соединить с другими концами, а гнездовые провода — это те, у которых есть принимающий конец.

    Провода-перемычки

    Резистор:- Резистор номиналом 1 кОм, используемый в схеме, показан ниже.

    Резисторы 1 кОм

    Светодиод:- Светоизлучающий диод — это полупроводниковое устройство, излучающее свет при протекании через него тока.

    Светодиод

    USB-кабель

    Этот кабель используется для подключения RaspberryPi к источнику питания. Это также помогает в передаче данных.

    USB-кабель

    Схема цепи

    Схема показана ниже, где катодный (отрицательный) контакт светодиода подключен к контакту заземления Raspberry Pi. Другой конец диода, который является анодным (положительным) концом светодиода, подключен к одному концу резистора. А другой конец резистора подключен к выводу #GPIO Raspberry Pi.В частности, GPIO 18, который обеспечивает сигналы PWM.

    Принципиальная схема

    Коды
     Импорт RPi.GPIO как GPIO 

    Добавлена ​​библиотека GPIO raspberry pi. Это используется для настройки режима, в котором работает GPIO.

     из времени импорта сна
    
     

    Модуль сна импортируется из библиотеки времени, он в основном используется для установки задержки.

     GPIO.setmode(GPIO.BOARD) 

    Режим настроен для GPIO.Здесь имя режима — GPIO.BOARD.

     GPIO.setup(led_pin, GPIO.OUT) 

    Вывод светодиода настроен как выход.

     pwm = GPIO.PWM(led_pin, 100) 

    Инициализируется функция ШИМ, которая используется для переключения яркости светодиода. Частота сигналов принята равной 100 Гц.

     pwm.start(0) 

    Затем сигнал ШИМ вначале инициализируется нулем.

     while 1: 

    Цикл while выполняется бесконечное время.

     попробуйте:
      для x в диапазоне (100):
       pwm.ChangeDutyCycle(x) # Изменить рабочий цикл
       sleep(0.01) 

    В цикле while выполняется цикл for с диапазоном 100. Это означает, что значение x варьируется от 0 до 100 рабочего цикла. После выполнения цикла добавляется задержка в 10 мс, чтобы лучше контролировать изменение свечения светодиодов. Этот цикл for выполняет функцию от низкого до высокого.

     для x в диапазоне (100,0,-1):
                pwm.ChangeDutyCycle(x)
                sleep(0.01) 

    Этот цикл for выполняет операцию, обратную предыдущей.То есть он считает от большего к меньшему с шагом минус 1. Цикл try завершается с окончанием этого цикла.

     pwm.stop() 

    ШИМ-сигнал предназначен для остановки.

     GPIO.cleanup() 

    Наконец, GPIO очищается и ему присваивается нуль.

    Полный код

     импортировать RPi.GPIO как GPIO
    из времени импортировать сон
    светодиод_пин = 12
    GPIO.setmode(GPIO.BOARD)
    GPIO.setup(led_pin, GPIO.OUT)
    pwm = GPIO.PWM(led_pin, 100)
    pwm.start(0) # Запуск ШИМ с коэффициентом заполнения 0%.
    пытаться:
        пока 1:
            для x в диапазоне (100):
                ШИМ.ChangeDutyCycle(x) # Изменение рабочего цикла
                сон(0,01)
                для x в диапазоне (100,0,-1):
                pwm.ChangeDutyCycle(x)
                сон(0,01)
                кроме KeyboardInterrupt:
                 проходить
                 ШИМ.стоп()
                 Gpio.cleanup () 

    Скачать форму коды здесь

    5

    4

    4

    4

    4

    Raspberry Pi Gpio дает либо 3,3 вольт как максимальные или нулевые вольты, поэтому вывод является квадратной волной и чтобы изменить яркость, мы не можем получить напряжение между 0-3.3 вольта. Поэтому здесь мы используем понятие рабочего цикла, то есть время включения и выключения сигнала, и соответствующим образом изменяем яркость.

    График зависимости напряжения от времени

    На рисунке выше показан график зависимости напряжения от времени с максимальным напряжением 3,3 В и минимальным напряжением, равным нулю. Здесь следует отметить, что с изменением рабочего цикла яркость светодиода можно изменять с помощью широтно-импульсной модуляции (ШИМ).

    Как видно из графика, при рабочем цикле 100 % график почти постоянен, тогда как при рабочем цикле 80 % на графике присутствует небольшое время T-off, время, когда выходной сигнал низкий.Точно так же постоянное изменение рабочего цикла изменяет время включения и выключения, и, таким образом, мы можем изменить яркость светодиода.

    На изображениях ниже показано изменение яркости светодиода.

    Аппаратный выход 1Аппаратный выход 2Аппаратный выход 3

    Видео пояснение всего проекта для лучшего восприятия.

    В рамках этого проекта можно было научиться управлять яркостью светодиода с помощью ШИМ-сигнала. Есть много других применений ШИМ, и, обладая этими знаниями, можно изучить то же самое на двигателе постоянного тока и понять, как управлять двигателем постоянного тока.

    Посетите ссылки ниже, чтобы узнать больше

    Интерфейс серводвигателя с Arduino

    интерфейса серводвигателя с RPI

    Управление малины PI с использованием телеграммы бота Telegram

    взаимодействие двигателя постоянного тока с Arduino

    Использование ШИМ (широтно-импульсной модуляции) для управления яркостью светодиодов с помощью Arduino — DumbleBots

    В этом уроке я объясню теорию ШИМ (широтно-импульсной модуляции) и как использовать ее с Arduino для управления яркостью светодиода.Как правило, любое цифровое устройство, такое как Arduino, работает только с двумя состояниями: ВКЛ (5 В) или ВЫКЛ (0 В). Однако во многих ситуациях мы хотим иметь аналоговые состояния, которые находятся где-то посередине между этими двумя состояниями.

    Допустим, состояние ON соответствует полной скорости двигателя или полной яркости светодиода, а состояние OFF означает остановку или отсутствие света, тогда степень яркости или любая промежуточная скорость (больше нуля, но меньше полной) можно получить с помощью этот метод называется ШИМ, что означает широтно-импульсная модуляция.Не пугайтесь этого слова, это очень простая и элегантная техника, реализованная в Arduino очень простым в использовании способом. Давайте начнем!

    Как работает ШИМ?

    PWM, что означает широтно-импульсная модуляция, представляет собой метод, используемый для преобразования цифровых напряжений в кажущиеся аналоговые напряжения . Микроконтроллер — это цифровое устройство, которое обычно может выдавать только 0 В или 5 В (некоторые микроконтроллеры используют 3,3 В вместо 5 В). Из-за этого любое устройство, которое они питают, может быть только включено или выключено, хотя нам часто нужны промежуточные состояния.Опять же, на примере светодиода, во многих случаях требуется, чтобы светодиод был не только включен (полная яркость) или выключен (нет света), но также имел переменную яркость, т.е. между полностью включенным и полностью выключенным .

    С помощью ШИМ выбирается контакт, и его напряжение очень быстро переключается между 5 В и 0 В, при этом контакт остается на каждом напряжении в течение переменного периода времени. Это дает эффект присутствия напряжения между 5 и 0. Имейте в виду, что это нужно делать в очень быстром темпе, иначе желаемого эффекта не будет.В приведенном ниже примере напряжение 2,5 В необходимо создать с помощью 5 В и 0 В. Вот как будет выглядеть состояние пина после его графического отображения -

    Контакт переключается между 5 В и 0 В, оставаясь на каждом из них одинаковое количество времени. Это соотношение 1:1 дает выходное напряжение 2,5 В. Опять же, количество времени, в течение которого вывод остается в каждом состоянии, чрезвычайно мало (порядка микросекунд или даже меньше).

    На этом графике вывод установлен на 5 В в два раза дольше, чем на 0, т.е.e соотношение становится 2:1. Это создает иллюзию присутствия 3,3 В.

    Вот еще один пример, но на этот раз напряжение устанавливается равным 0 В в два раза дольше, чем 5 В, то есть в соотношении 1:2. Это создает иллюзию напряжения 1,67 В.

    Теперь, когда у нас есть некоторое представление о работе ШИМ, давайте посмотрим, как мы можем использовать его для управления яркостью светодиода с помощью Arduino.

    Шаг 1: Сбор деталей

    На этом шаге я буду перечислять все необходимые детали и способы их получения.

    Ардуино УНО USB-кабель для программирования Arduino 5 мм светодиод

    Эти детали можно купить у любого интернет-магазина, так как для вашего удобства я перечислил некоторые места в конце этого руководства. Возможно, у вас уже есть эти части, если вы прочитали и попробовали пример из моего блога о начале работы с Arduino.

    Шаг 2а: Понимание различных контактов на Arduino

    Прежде чем мы начнем собирать схему, полезно разобраться в различных типах выводов на Arduino и узнать, какие из них изначально поддерживают ШИМ .Хотя другие контакты могут быть созданы для выполнения ШИМ, но это потребует от программиста ручного кодирования и использования таких методов, как программирование прерываний. Что касается пинов, которые поддерживают его изначально, это можно сделать с помощью простых прямых вызовов некоторых функций, как мы увидим дальше. Давайте сначала разберемся с булавками. Их можно разделить на следующие типы-

    1. Контакты питания
    2. Контакты аналогового ввода
    3. Контакты цифрового ввода-вывода (некоторые из которых поддерживают ШИМ, отмечены ~)

    Контакты питания говорят сами за себя, т.е.е. они используются для обеспечения питания цепи. Например, все контакты Vin, VCC, GND являются контактами питания.

    Контакты аналогового входа — это контакты, которые можно использовать либо для считывания аналоговых сигналов, либо для вывода цифровых сигналов. Однако их нельзя использовать для выполнения ШИМ для генерации аналоговых сигналов. Это контакты, перед номером которых стоит буква «А». Например, на UNO контакты с A0 по A5 являются аналоговыми входными контактами.

    Контакты цифрового ввода-вывода — это контакты, которые можно использовать как для цифрового ввода, так и для вывода.Это контакты, которые обычно нумеруются без каких-либо специальных символов. Например, на UNO контакты с 0 по 13 являются контактами цифрового ввода-вывода. Они способны выводить цифровые сигналы и считывать цифровые сигналы.

    Несколько специальных цифровых выводов ввода-вывода, помеченных символом тильды (~) перед ними, изначально способны к ШИМ, что означает, что они не требуют ручного программирования. Вся работа по включению и выключению на требуемой частоте выполняется внутри. Вот список контактов, которые поддерживают ШИМ на различных Arduino.

    Шаг 2b: Настройка простой схемы ШИМ

    На этом этапе я покажу, как построить схему для этого проекта. Начните с подключения более короткой ножки -ve (называемой катодом) светодиода к любому контакту GND на Arduino, а более длинной ножки +ve (называемой анодом) - к любому контакту с поддержкой ШИМ. На изображении ниже я подключил его к контакту 11, потому что он близок к контакту GND, и это позволяет мне не использовать макетные платы и дополнительные провода.

    Шаг 3: Код для управления яркостью светодиодов

    На этом этапе я объясню код, необходимый для использования приведенной выше схемы для изменения яркости светодиода.Если вы не знакомы с тем, как использовать Arduino IDE, загляните в мой стартовый блог. Вот короткий, но полный код -

    Теперь давайте разберем код шаг за шагом.

    В этом сегменте я создаю переменную с именем pwm и присваиваю ей значение 11. Замените 11 любым контактом, который вы использовали. Затем я установил вывод в режим вывода.

    Затем я отправляю на вывод аналоговое значение (от 0 до 255) с помощью функции AnalogWrite. Функция принимает все целые числа от 0 до 255.Любое значение выше или ниже приведет к ошибке. Любые десятичные значения также не допускаются. Передаваемое значение представляет собой напряжение от 0 до 5 В .

    Формула преобразования:

    значение = (требуемое напряжение)*255/5

    Это может быть упрощено до-

    значение = (требуемое напряжение)*51

    Используя это, вы можете видеть, что программа сначала устанавливает напряжение на 5 В (или ВЫСОКОЕ), ждет 0,75 секунды, устанавливает его на 2.5v, ждет еще раз, устанавливает напряжение на 0v (или LOW), ждет в последний раз и все повторяет.

    Настройка 2,5 В, т. е. AnalogWrite(pwm,127), выполняет внутренние циклы включения и выключения с требуемой частотой для создания этого вывода через вывод, поддерживающий ШИМ. Нам не нужно делать это в нашем коде. Вот как PWM изначально поддерживается на Arduino.

    Теперь вы можете скомпилировать и загрузить код на плату, и если все прошло хорошо, вы должны увидеть включение светодиода, изменение яркости на половину предыдущей (но по-прежнему гореть) и, наконец, выключение.

    Шаг 4: Немного поиграем

    Теперь, когда мы разобрались с программой, давайте немного ее настроим и поэкспериментируем.

    Попробуйте заменить аналогЗапись(ШИМ, 255) на цифровуюЗапись(ШИМ, ВЫСОКИЙ). Вы увидите, что это не меняет вывод. Это связано с тем, что в обоих случаях вы указываете контакту делать одно и то же, то есть быть включенным 100% времени, давая выходное напряжение 5 В. То же самое можно сказать и для аналоговой записи (ШИМ, 0) и для цифровой записи (ШИМ, НИЗКИЙ), так как оба говорят, что вывод выключен 100% времени, то есть на выходе 0 В.Тип вывода не имеет значения, когда мы имеем дело с состоянием «включено» или «выключено», поскольку это нормальное поведение, ожидаемое от микроконтроллера.

    Вы можете попробовать заменить значения, чтобы увидеть, как изменится яркость светодиода. Вы даже можете попробовать написать программу, которая заставляет светодиод постепенно гаснуть до полной яркости и обратно.

    Ваши комментарии всегда приветствуются!

    Дополнительные ресурсы

    1. PWM (Википедия)
    2. Официальный веб-сайт Arduino
    3. Arduino PWM, ссылка
    4. Arduino Tone(), ссылка

    Ссылки для покупки

    Вот несколько интернет-магазинов, где можно купить запчасти.Поиск в гугле даст гораздо больше.

    1. Amazon
    2. Robokits India
    3. Rhydolabz
    4. xcluma

    Нравится:

    Нравится Загрузка...

    Родственные

    Аналоговый выход через ШИМ | Как контролировать яркость светодиода?

    Введение

    ШИМ или Широтно-импульсная модуляция — это метод получения аналогового выхода с использованием цифровых сигналов .

    Цифровой сигнал, как правило, может иметь одно из двух значений: HIGH/ON или LOW/OFF . Если мы будем переключать сигнал между этими двумя значениями с чрезвычайно высокой скоростью, скажем, 500 раз за 1 секунду, сигнал на выходе будет казаться непрерывным; будет казаться, что это аналоговый сигнал.

    Длительность включенного времени , т. е. время, в течение которого сигнал HIGH называется шириной импульса . Чтобы получить различные аналоговые значения, вы можете модулировать , т.е.е. изменить эту ширину импульса. Если вы повторяете эту последовательность включения-выключения достаточно быстро, результатом будет постоянное напряжение между 0 и 5В.

    Например, если вам нужно иметь эти типы аналогового выхода напряжения, то это будут графики выходного сигнала:

    • 0% ПВ | аналогЗапись(0)
    • Рабочий цикл 25% | аналогНаписать(64)
    • Рабочий цикл 50 % | аналогНаписать(127)
    • Рабочий цикл 75% | аналогНаписать(191)
    • 100% рабочий цикл | аналогНаписать(255)

    evive и Arduino генерируют аналоговый выходной сигнал в форме ШИМ.Контакт 13 внутренне подключен к контакту 13 светодиода, который является контактом PWM.

    аналоговая запись ()

    Обычно частота ШИМ Arduino составляет около 500 Гц. В Arduino IDE мы используем концепцию ШИМ через функцию AnalogWrite(). Мы даем значение в диапазоне от 0 до 255, так что AnalogWrite(255) запрашивает 100% рабочий цикл (всегда ON ), а AnalogWrite(127) соответствует 50% рабочему циклу (ON для половину времени).

    Синтаксис:

    аналоговая запись (вывод, значение)

    , где - контакт - контакт ШИМ, а значение - рабочий цикл от 0% (всегда ВЫКЛ. или 0) до 100% (всегда ВКЛ. или 255)

    Пример: светодиодная цепь

    В предыдущей теме вы узнали о светодиоде и его свойствах.Кроме того, вы запрограммировали встроенный светодиод, подключенный к цифровому выводу 13. Теперь, используя концепцию аналоговой записи, мы будем управлять яркостью светодиода, подключенного к цифровому выводу 3 (мы выбрали этот вывод, поскольку он является выводом ШИМ).

    Начнем.

    Необходимые компоненты

    Вам потребуется несколько дополнительных компонентов для этого действия, а именно:

    Схема для светодиода — Arduino

     

    Цепь для светодиода — evive

     

    Что теперь будем делать?

    В этом примере мы будем управлять яркостью светодиода.Сначала светодиод будет становиться ярче, пока не достигнет максимальной яркости, а затем станет тусклее, пока не выключится. Мы повторим этот процесс. Если мы будем управлять подачей напряжения на светодиод, мы сможем управлять током, протекающим через него, и, как следствие, его яркостью.

    Ниже приведен скетч Arduino:

     

    Яркость светодиода



    Эта панель имеет 3 ползунка для управления яркостью 3 светодиодов.

    Эта панель демонстрирует элементы ползунка и широтно-импульсную модуляцию (ШИМ) для управления яркость светодиода.

    Об этой демонстрации


    В этой демонстрации используются модули Bluetooth HC-05 или HC-06 с платой Arduino. для связи с устройством Android с помощью Bluetooth. Приложение Bluetooth Electronics используется с 3 ползунками для управления количеством красного, зеленого и синего светодиодов. Широтно-импульсная модуляция

    (ШИМ) — это быстрое включение и выключение цифрового выхода. чтобы информация могла быть закодирована в сигнале.Среднее время этого сигнал может использоваться для управления выходной мощностью устройства, например, светодиодов в этой демонстрации. Для этого команда Arduino AnalogWrite() использует ШИМ. На каждые 256 отсчетов вывод удерживается высоким до тех пор, пока не будет достигнуто запрошенное значение аналоговой записи. Это повторяется каждые 2,04 мс или на частоте 490 Гц (для Arduino Uno 16 МГц с настройками по умолчанию). Таким образом, значение 0 будет отключено все время, значение 255 будет включено все время, а все, что между ними, будет шириной импульса модулируется, чтобы быть включенным в течение части времени.

    Обратите внимание, что существует несколько способов достижения включенного состояния, например. 50 % времени. Как и в случае с Arduino, его можно рассматривать как рабочий цикл с включенными первыми 50% счетчиков. Однако это также может быть достигнуто путем разделения состояний «включено» таким образом, чтобы состояние чередовалось. каждые часы, … и так далее.

    Хотя мы использовали 3 светодиода и резистор 470 Ом (используемое сопротивление зависит от светодиода) последовательно с ними, один RGB также можно использовать светодиод. Светодиод RGB имеет 4 вывода, самый длинный из которых общий, а другой три для красного синего и зеленого.Обратитесь к техническому паспорту, какой вывод соответствует какому цвет и за что текущий рейтинг для каждого цвета.


    Демо-версия LED Brightness с 3 светодиодами

    Используемые компоненты


    • Ардуино Уно
    • Модуль Bluetooth HC-06
    • 3 светодиода или один светодиод RGB
    • 470 Ом (зависит от светодиода), резисторы 10 кОм и 20 кОм
    • Prototype Shield для Arduino Uno

    Принципиальная схема


    Резисторы R1, R2 и R3 зависят от используемого светодиода.Они ограничивают ток, поэтому светодиод не перегорает.

    Пока мы используем Arduino Uno для этой демонстрации, хотя вы могли бы использовать другая модель, если вы предпочитаете, просто убедитесь, что она имеет 3 контакта с Pulse Возможность широтной модуляции (ШИМ) и соответствие подключенных контактов к тому, что в эскизе Arduino. Для этой демонстрации мы используем контакты 9, 10 и 11 Arduino Uno, установив их как выходы, а затем используя команду AnalogWrite() установить рабочий цикл.

    Модуль Bluetooth имеет 4 разъема: GND, 5V, RX и TX. Контакт TX на Bluetooth Модуль подключается к контакту RX на Arduino и наоборот. Для последовательной связи соединение передачи (TX) должно быть получено соединением (RX).

    Обратите внимание, что модуль Bluetooth работает при напряжении 3,3 В. Подача 5 В на Bluetooth RX контакт может повредить его, поэтому для питания 3,3 В следует использовать делитель напряжения. сигнал на вывод RX. Это достигается в этой демонстрации с резисторами 20k и 10k.То Контакт TX модуля Bluetooth не требует модификации и может подключаться напрямую к Контакт Arduino RX. Это связано с тем, что HIGH на логике 3,3 В все равно будет распознан как HIGH на логической схеме 5V на Arduino.


    Ардуино код

    //Яркость светодиода PWM и демонстрация последовательного соединения Bluetooth
    // Автор: keuwlsoft:  www.keuwl.com  23 августа 2015 г.
    
    интервал Red_LED_Pin = 9; // Пин ШИМ для красного светодиода
    интервал Green_LED_Pin = 10; // вывод ШИМ для зеленого светодиода
    интервал Blue_LED_Pin = 11; // вывод ШИМ для синего светодиода
    
    //Переменные для хранения значений яркости в диапазоне от 0 (выключено) до 255 (полностью включено)
    интервал Red_value = 0;
    intЗеленое_значение=0;
    интервал Blue_value = 0;
    
    char Данные Bluetooth; // данные, полученные от последовательной связи Bluetooth
    
    недействительная установка () {
     
     // Инициализировать контакты светодиода как выходы
     pinMode (Red_LED_Pin, ВЫХОД);
     pinMode (Green_LED_Pin, ВЫХОД);
     pinMode (Blue_LED_Pin, ВЫХОД);
    
     //инициализация последовательной связи
      Серийный номер  .начало (9600);
    }
    
    недействительный цикл () {
    
     //Обрабатываем любую информацию, поступающую по последовательному каналу Bluetooth
     если ( серийный номер  .доступно()){
     BluetoothData=  Серийный номер  .read(); //Получить следующий символ из bluetooth
     if(BluetoothData=='R') Red_value=  Серийный номер  .parseInt(); //Чтение красного значения
     if(BluetoothData=='G') Green_value=  Серийный номер  .parseInt(); // Чтение зеленого значения
     if(BluetoothData=='B') Blue_value=  Серийный номер  .parseInt(); // Чтение синего значения
     }
     
     //обновляем яркость светодиода
     аналогЗапись (Red_LED_Pin, Red_value);
     аналогЗапись (Green_LED_Pin, Green_value);
     аналогЗапись (Blue_LED_Pin, Blue_value);
     
     задержка (10);
     
    }
    
     

    Программирование Arduino


    Откройте программное обеспечение Arduino, выберите правильный COM-порт и устройство Arduino в меню «Инструменты», скопируйте и вставьте эскиз и нажмите загрузить.Чтобы запрограммировать устройство, убедитесь, что вы удалите контакты 0 и 1, подключающиеся к модулю Bluetooth, иначе Arduino запутается пытается связаться с двумя последовательными устройствами одновременно на одних и тех же контактах. Повторно соедините их после программирования.

    AnalogWrite() принимает два аргумента: номер вывода и значение, которое 8-битное число в диапазоне от 0 (всегда низкий уровень) до 255 (всегда высокий уровень).

    При получении символа идентификации ползунка, в данном случае символов «R», «G» или «B», он вызывает функцию parseInt(), которая считывает следующее целое число из последовательного потока.

    3 ползунка отправят символ ('R', 'G' или 'B' в данном случае), чтобы сказать Arduino быть готовым к приему новое значение яркости, за которым следует значение. Также отправляется последний нечисловой конечный символ. чтобы убедиться, что arduino немедленно анализирует целочисленное значение, а не ждет пока не будет получен другой нечисловой символ.

    Приложение Bluetooth Electronics


    1) Запустите приложение Bluetooth Electronics, нажмите изменить, найдите пустую панель и выберите кнопки

    2) Добавьте 3 ползунка для красного, зеленого и синего светодиодов.

    Регулятор яркости светодиодов: Простейший регулятор яркости светодиодов | Сделай сам своими руками

Добавить комментарий

Ваш адрес email не будет опубликован.