Расчет водяных теплых полов по площади: Расчет теплого пола водяного самостоятельно

Калькулятор для расчета водяного теплого пола онлайн
Отапливаемая площадь(м2)*:

Подводка(м):
(расстояние от коллектора до границы отапливаемой площади)

Количество контуров(шт):

Труба:
(бренд, диаметр, толщина стенки)
Valtec 16x2,0 Valtec 20x2,0 Rehau Rautherm S 14x1,5 Rehau Rautherm S 17x2,0 Rehau Rautherm S 20x2,0 Rehau Rautitan pink 16x2,2 Rehau Rautitan pink 20x2,8 Rehau Rautitan stabil 16,2x2,6 Rehau Rautitan stabil 20x2,9 Rehau Rautitan flex 16x2,2 Rehau Rautitan flex 20x2,8

Шаг трубы(см): 10 см 15 см 18 см 20 см 25 см 30 см

Арматурная сетка: Да Нет

Утеплитель:
(если Вы выбираете "Без утеплителя" или "Пенофол 10 мм" - следует выбрать Арматурную сетку)
Без утеплителя Пенофол 10 мм Пенополистирол 20 мм Пенополистирол 30 мм Пенополистирол 50 мм

Запитка системы:
(то к чему будет подключен водяной теплый пол)
Без подключения Отопительный котел Система центрального отопления или полотенцесушитель

Расчитать смету
Расчитать материалы

Содержание

Тепловой и гидравлический расчет теплого пола.

Примерное кол-во тепла, необходимое для обогрева помещения.
Единицы измерения - Ватт. Теплопотери помещения Вт

При указании площади учитывать необходимые отступы от стен.
Единицы измерения - квадратные метры. Площадь теплого пола м2

Назначение рассчитываемого помещения Назначение помещения Постоянное пребывание людей Постоянное пребывание людей (Влажное помещение) Временное пребывание людей Временное пребывание людей (Влажное помещение) Детское учреждение

Необходимая температура воздуха в рассчитываемом помещении.
Единицы измерения - градусы цельсия. Требуемая t°С воздуха в помещении °С

Температура воздуха в нижерасположенном помещении.
Если помещение отсутствует, указывать 0.
Единицы измерения - градусы цельсия. t°С воздуха в нижнем помещении °С

Шаг укладки трубы ТП.
Единицы измерения - сантиметры. Шаг трубы 10 15 20 25 30 см

Тип труб используемых в системе ТП, внешний диаметр и толщина стенок. Тип труб Металлопластиковые 16х1.5 Металлопластиковые 16х2.0 Металлопластиковые 20х2.0 Металлопластиковые 26х3.0 Металлопластиковые 32х3.0 Металлопластиковые 40х3.5 Полиэтиленовые 16х2.2 Полиэтиленовые 16х2.0 Полиэтиленовые 20х2.0 Полиэтиленовые 25х2.3 Полиэтиленовые 32х 3.0 Полипропиленовые 16х1.8 Полипропиленовые 16х2.7 Полипропиленовые 20х1.9 Полипропиленовые PPR 20х3.4 Полипропиленовые 25х2.3 Полипропиленовые PPR 25х4.2 Полипропиленовые 32х3.0 Полипропиленовые PPR 32х5.4 Полипропиленовые PPR 40х6.7 Полипропиленовые PPR 50х8.3 Полипропиленовые PPR-FIBER 20х2.8 Полипропиленовые PPR-FIBER 20х3.4 Полипропиленовые PPR-FIBER 25х3.5 Полипропиленовые PPR-FIBER 25х4.2 Полипропиленовые PPR-FIBER 32х4.4 Полипропиленовые PPR-FIBER 32х5.4 Полипропиленовые PPR-FIBER 40х5.5 Полипропиленовые PPR-FIBER 40х6.7 Полипропиленовые PPR-FIBER 50х6.9 Полипропиленовые PPR-FIBER 50х8.3 Полипропиленовые PPR-ALUX 20х3.4 Полипропиленовые PPR-ALUX 25х4.2 Полипропиленовые PPR-ALUX 32х5.4 Полипропиленовые PPR-ALUX 40х6.7 Полипропиленовые PPR-ALUX 50х8.3 Медные 10х1 Медные 12х1 Медные 15х1 Медные 18х1 Медные 22х1 Медные 28х1 Медные 35х1.5 Стальные ВГП легкие 1/2" Стальные ВГП обыкновенные 1/2" Стальные ВГП усиленные 1/2" Стальные ВГП легкие 3/4" Стальные ВГП обыкновенные 3/4" Стальные ВГП усиленные 3/4" Стальные ВГП легкие 1" Стальные ВГП обыкновенные 1" Стальные ВГП усиленные 1"

Температура теплоносителя на выходе из котла в систему ТП.
Единицы измерения - градусы цельсия. Температура теплоносителя на входе°С

Температура теплоносителя на входе в котел из системы ТП. В среднем ниже на 5-10°С температуры теплоносителя на входе в систему ТП.
Единицы измерения - градусы цельсия. Температура теплоносителя на выходе°С

Длина трубы от котла до рассчитываемого помещения "туда-обратно".
Единицы измерения - метры. Длина подводящей магистрали метров

Слои НАД трубами:

↑ Нет Бетоны Бетоны Легкие Гидроизоляция Грунты Дерево Камень Металлы Облицовка Полы Разное Растворы Стеновые материалы Сыпучие материалы Утеплители мм

↑ Нет Бетоны Бетоны Легкие Гидроизоляция Грунты Дерево Камень Металлы Облицовка Полы Разное Растворы Стеновые материалы Сыпучие материалы Утеплители Ковролин (0.07 λ Вт/м К) Линолеум многослойный ρ1600 (0.33 λ Вт/м К) Линолеум многослойный ρ1800 (0.38 λ Вт/м К) Линолеум на тканевой основе ρ1400 (0.23 λ Вт/м К) Линолеум на тканевой основе ρ1600 (0.29 λ Вт/м К) Линолеум на тканевой основе ρ1800 (0.35 λ Вт/м К) Паркет (0.2 λ Вт/м К) Ламинат (0.3 λ Вт/м К) Плитка ПВХ (0.38 λ Вт/м К) Плитка керамическая (1 λ Вт/м К) Пробка (0.047 λ Вт/м К) мм

↥ Бетоны Бетоны Легкие Гидроизоляция Грунты Дерево Камень Металлы Облицовка Полы Разное Растворы Стеновые материалы Сыпучие материалы Утеплители Раствор гипсоперлитовый ρ600 (0.23 λ Вт/м К) Раствор гипсоперлитовый поризованный ρ400 (0.15 λ Вт/м К) Раствор гипсоперлитовый поризованный ρ500 (0.19 λ Вт/м К) Раствор известково-песчаный ρ1600 (0.81 λ Вт/м К) Раствор сложный (цемент+песок+известь) ρ1700 (0.87 λ Вт/м К) Раствор цементно-перлитовый ρ1000 (0.3 λ Вт/м К) Раствор цементно-перлитовый ρ800 (0.26 λ Вт/м К) Раствор цементно-песчаный ρ1800 (0.93 λ Вт/м К) Раствор цементно-шлаковый ρ1200 (0.58 λ Вт/м К) Раствор цементно-шлаковый ρ1400 (0.64 λ Вт/м К) мм

Слои ПОД трубами (начиная от трубы):

↧ Нет Бетоны Бетоны Легкие Гидроизоляция Грунты Дерево Камень Металлы Облицовка Полы Разное Растворы Стеновые материалы Сыпучие материалы Утеплители мм

↓ Нет Бетоны Бетоны Легкие Гидроизоляция Грунты Дерево Камень Металлы Облицовка Полы Разное Растворы Стеновые материалы Сыпучие материалы Утеплители Армопенобетон (0.13 λ Вт/м К) Асбест (0.08 λ Вт/м К) Асбозурит ρ600 (0.15 λ Вт/м К) Битумокерамзит (0.13 λ Вт/м К) Битумоперлит ρ400 (0.13 λ Вт/м К) Изделия перлитофосфогелиевые ρ200 (0.09 λ Вт/м К) Изделия перлитофосфогелиевые ρ300 (0.12 λ Вт/м К) Каучук вспененный Аэрофлекс ρ80 (0.054 λ Вт/м К) Каучук вспененный Кайманфлекс ST ρ80 (0.039 λ Вт/м К) Каучук вспененный Кайманфлекс ЕС ρ80 (0.039 λ Вт/м К) Каучук вспененный Кайманфлекс ЕСО ρ95 (0.041 λ Вт/м К) Куцчук вспененный Армафлекс ρ80 (0.04 λ Вт/м К) Маты алюминиево-кремниевые волокнистые Сибрал ρ300 (0.085 λ Вт/м К) Маты из супертонкого стекловолокна ρ20 (0.036 λ Вт/м К) Маты минераловатные Парок (0.042 λ Вт/м К) Маты минераловатные Роквул ρ35 (0.048 λ Вт/м К) Маты минераловатные Роквул ρ50 (0.047 λ Вт/м К) Маты минераловатные Флайдер ρ11 (0.055 λ Вт/м К) Маты минераловатные Флайдер ρ15 (0.053 λ Вт/м К) Маты минераловатные Флайдер ρ17 (0.053 λ Вт/м К) Маты минераловатные Флайдер ρ25 (0.05 λ Вт/м К) Маты стекловолоконные ρ150 (0.07 λ Вт/м К) Маты стекловолоконные ρ50 (0.064 λ Вт/м К) Опилки древесные (0.08 λ Вт/м К) Пакля ρ150 (0.07 λ Вт/м К) Пенопласт ППУ ρ80 (0.025 λ Вт/м К) Пенопласт ПХВ-1 ρ100 (0.052 λ Вт/м К) Пенопласт ПХВ-1 ρ125 (0.064 λ Вт/м К) Пенопласт ЦУСПОР ρ50 (0.025 λ Вт/м К) Пенопласт ЦУСПОР ρ70 (0.028 λ Вт/м К) Пенопласт карбамидный Мэттэмпласт (пеноизол) ρ20 (0.03 λ Вт/м К) Пенопласт резольнофенолфор3дегидный ρ100 (0.076 λ Вт/м К) Пенопласт резольнофенолфор3дегидный ρ40 (0.06 λ Вт/м К) Пенопласт резольнофенолфор3дегидный ρ50 (0.064 λ Вт/м К) Пенопласт резольнофенолфор3дегидный ρ75 (0.07 λ Вт/м К) Пенополистирол ρ100 (0.052 λ Вт/м К) Пенополистирол ρ150 (0.06 λ Вт/м К) Пенополистирол ρ40 (0.05 λ Вт/м К) Пенополистирол Пеноплекс ρ35 (0.03 λ Вт/м К) Пенополистирол Пеноплекс ρ43 (0.032 λ Вт/м К) Пенополистирол Радослав ρ18 (0.043 λ Вт/м К) Пенополистирол Радослав ρ24 (0.041 λ Вт/м К) Пенополистирол Стиродур 2500С ρ25 (0.031 λ Вт/м К) Пенополистирол Стиродур 2800С ρ28 (0.031 λ Вт/м К) Пенополистирол Стиродур 3035С ρ33 (0.031 λ Вт/м К) Пенополистирол Стиродур 4000С ρ35 (0.031 λ Вт/м К) Пенополистирол Стиродур 5000С ρ45 (0.031 λ Вт/м К) Пенополистирол Стиропор PS15 ρ15 (0.044 λ Вт/м К) Пенополистирол Стиропор PS20 ρ20 (0.042 λ Вт/м К) Пенополистирол Стиропор PS30 ρ30 (0.04 λ Вт/м К) Пенополиуретан ρ40 (0.04 λ Вт/м К) Пенополиуретан ρ60 (0.041 λ Вт/м К) Пенополиуретан ρ80 (0.05 λ Вт/м К) Пенополиуретан Изолан 101 (2) ρ70 (0.027 λ Вт/м К) Пенополиуретан Изолан 101 (3) ρ70 (0.028 λ Вт/м К) Пенополиуретан Изолан 105 (2) ρ70 (0.025 λ Вт/м К) Пенополиуретан Изолан 105 (3) ρ70 (0.027 λ Вт/м К) Пенополиуретан Изолан 123 (2) ρ75 (0.028 λ Вт/м К) Пенополиуретан Изолан 123 (3) ρ75 (0.028 λ Вт/м К) Пенополиуретан Изолан 18М ρ65 (0.026 λ Вт/м К) Пенополиуретан Изолан 210 ρ65 (0.025 λ Вт/м К) Пенополиуретан Корунд ρ70 (0.027 λ Вт/м К) Пеностекло ρ200 (0.09 λ Вт/м К) Пеностекло ρ300 (0.12 λ Вт/м К) Пеностекло ρ400 (0.14 λ Вт/м К) Перлитопластбетон ρ100 (0.05 λ Вт/м К) Перлитопластбетон ρ200 (0.06 λ Вт/м К) Плиты минераловатные прошивные на синтетическом связующем ρ125 (0.07 λ Вт/м К) Плиты минераловатные прошивные на синтетическом связующем ρ50 (0.06 λ Вт/м К) Плиты минераловатные прошивные на синтетическом связующем ρ75 (0.064 λ Вт/м К) Плиты базальтовые ТермоЛайт ρ40 (0.044 λ Вт/м К) Плиты базальтовые ТермоЛайт ρ55 (0.043 λ Вт/м К) Плиты базальтовые Термовент ρ90 (0.04 λ Вт/м К) Плиты базальтовые Термокровля ρ110 (0.04 λ Вт/м К) Плиты базальтовые Термокровля ρ160 (0.043 λ Вт/м К) Плиты базальтовые Термокровля ρ185 (0.045 λ Вт/м К) Плиты базальтовые Термокровля ρ210 (0.045 λ Вт/м К) Плиты базальтовые Термомонолит ρ130 (0.041 λ Вт/м К) Плиты базальтовые Термопол ρ150 (0.041 λ Вт/м К) Плиты базальтовые Термостена ρ70 (0.043 λ Вт/м К) Плиты базальтовые Термофасад ρ150 (0.043 λ Вт/м К) Плиты камышитовые ρ200 (0.09 λ Вт/м К) Плиты камышитовые ρ300 (0.14 λ Вт/м К) Плиты минераловатные ППЖ ρ200 (0.054 λ Вт/м К) Плиты минераловатные Роквул ρ100 (0.045 λ Вт/м К) Плиты минераловатные Роквул ρ150 (0.047 λ Вт/м К) Плиты минераловатные Роквул ρ200 (0.05 λ Вт/м К) Плиты минераловатные Флайдер ρ15 (0.055 λ Вт/м К) Плиты минераловатные Флайдер ρ17 (0.053 λ Вт/м К) Плиты минераловатные Флайдер ρ20 (0.048 λ Вт/м К) Плиты минераловатные Флайдер ρ30 (0.046 λ Вт/м К) Плиты минераловатные Флайдер ρ35 (0.046 λ Вт/м К) Плиты минераловатные Флайдер ρ45 (0.045 λ Вт/м К) Плиты минераловатные Флайдер ρ60 (0.045 λ Вт/м К) Плиты минераловатные Флайдер ρ75 (0.047 λ Вт/м К) Плиты минераловатные Флайдер ρ85 (0.05 λ Вт/м К) Плиты минераловатные на крахмальном связующем ρ125 (0.064 λ Вт/м К) Плиты минераловатные на крахмальном связующем ρ200 (0.08 λ Вт/м К) Плиты минераловатные на синтетическом и битумном связующем ρ100 (0.07 λ Вт/м К) Плиты минераловатные на синтетическом и битумном связующем ρ200 (0.08 λ Вт/м К) Плиты минераловатные на синтетическом и битумном связующем ρ300 (0.09 λ Вт/м К) Плиты минераловатные на синтетическом и битумном связующем ρ350 (0.11 λ Вт/м К) Плиты минераловатные на синтетическом и битумном связующем ρ50 (0.06 λ Вт/м К) Плиты минераловатные полужесткие ρ90 (0.045 λ Вт/м К) Плиты минераловатные полужесткие гидрофобизированные ρ100 (0.045 λ Вт/м К) Плиты минераловатные фасадные ПФ ρ180 (0.053 λ Вт/м К) Плиты стекловолоконные ρ50 (0.064 λ Вт/м К) Плиты торфяные ρ200 (0.064 λ Вт/м К) Плиты торфяные ρ300 (0.08 λ Вт/м К) Плиты торфяные Геокар ρ380 (0.072 λ Вт/м К) Плиты фибролитовые ρ300 (0.14 λ Вт/м К) Плиты фибролитовые ρ400 (0.16 λ Вт/м К) Плиты фибролитовые ρ600 (0.23 λ Вт/м К) Плиты фибролитовые ρ800 (0.3 λ Вт/м К) Полиэтилен вспененный (0.044 λ Вт/м К) Полиэтилен вспененный Пенофол ρ60 (0.04 λ Вт/м К) Пух гагчий (0.008 λ Вт/м К) Совелит ρ400 (0.087 λ Вт/м К) Шевелин (0.045 λ Вт/м К) Эковата ρ40 (0.043 λ Вт/м К) Эковата ρ50 (0.048 λ Вт/м К) Эковата ρ60 (0.052 λ Вт/м К) мм

↓ Нет Бетоны Бетоны Легкие Гидроизоляция Грунты Дерево Камень Металлы Облицовка Полы Разное Растворы Стеновые материалы Сыпучие материалы Утеплители Асфальтобетон ρ2100 (1.05 λ Вт/м К) Бетон тяжелый ρ2400 (1.51 λ Вт/м К) Железобетон ρ2500 (1.69 λ Вт/м К) Плиты железобетонные пустотные при потоке сверху-вниз (1.11 λ Вт/м К) Плиты железобетонные пустотные при потоке снизу-вверх (1.27 λ Вт/м К) Силикатный бетон ρ1800 (1.16 λ Вт/м К) мм

Расчет водяного теплого пола, онлайн калькулятор теплопотери

Желаемая температура воздуха

Это комфортная для жильцов температура в помещении. Желаемая температура - очень индивидуальный параметр, ведь кому-то нравится высокая температура в помещении, а кому-то прохлада.

Европейские нормы указывают, что в спальне, кабинете, гостиной, столовой и кухне оптимальной является температура 20-24°С; в туалете, кладовой, гардеробной - 17-23°С; в ванной - 24-25°С.

Усредненно можно задать 20°С.


Вверх

Температура подачи / температура обратки

Температура подачи - температура теплоносителя в подающем коллекторе. Т.е. на входе в контур теплого пола.

Температура обратки - температура теплоносителя в обратном коллекторе (на выходе из контура).

 

 

Для того, чтобы теплый пол отапливал помещение, он должен отдавать тепло, т.е. температура подачи должна быть выше температуры обратки. Оптимально, если разница температуры подачи и обратки составляет 10°С (например, подача - 45°С, обратка - 35°С).

Для обогрева помещения температура подачи должна быть выше желаемой температуры в помещении.


Вверх

Температура в нижнем помещении

Эта температура необходима для учета тепла, идущего вниз, т.е. теплопотерь.

Если теплый пол располагается над помещением (нижний этаж, подвал), то используется температура, поддерживаемая в нем. Если пол располагается над грунтом или на грунте, то для расчета используется температура воздуха для самой холодной пятидневки года. Этот показатель автоматически подставляется для выбранного города.


Вверх

Шаг укладки труб теплого пола

Это расстояние между трубами, залитыми в стяжку пола. От шага укладки зависит теплоотдача теплых полов - чем меньше шаг, тем больше удельная теплоотдача, и наоборот.

Оптимальный шаг укладки труб теплого пола лежит в пределах 10-30 см. При меньшем шаге возможна отдача тепла из подачи в обратку. При большем - неравномерный прогрев пола, когда на поверхности пола над трубой ощущается тепло, а между трубами - холод.


Вверх

Длина подводящей магистрали теплого пола

Это сумма длин труб от подающего коллектора до начала контура теплого пола и от конца контура до обратного коллектора.


При размещении коллектора теплого пола в том же помещении, где и теплые полы, влияние подводящей магистрали незначительно. Если же они находятся в разных помещениях, то длина подводящей магистрали может быть большой и ее гидравлическое сопротивление может составлять половину сопротивления всего контура.


Вверх

Толщина стяжки над трубами теплого пола

Назначение стяжки над трубами теплых полов - воспринимать нагрузку от людей и предметов в отапливаемом помещении и равномерно распределять тепло от труб по поверхности пола.


Минимально допустимая толщина стяжки над трубой составляет 30 мм при наличии армирования. При меньшей толщине стяжка будет обладать недостаточной прочностью. Также, малая толщина стяжки не обеспечивает равномерный нагрев поверхности пола - возникают полосы горячего пола над трубой и холодного между трубами.

Заливать стяжку толще 100 мм не стоит, т.к. это увеличивает инерционность теплых полов, исключает возможность быстрого регулирования температуры пола. При большой толщине изменение температуры поверхности пола будет происходить спустя несколько часов, а то и суток.

Исходя из этих условий, оптимальная толщина стяжки теплого пола - 60-70 мм над трубой. Добавление в раствор фибры и пластификатора позволяет уменьшить толщину до 30-40 мм.


Вверх

Максимальная температура поверхности пола

Это температура поверхности пола непосредственно над трубой контура. По нормативным требованиям этот параметр не должен превышать 35°С.


Вверх

Минимальная температура поверхности пола

Это температура поверхности пола на равном расстоянии от труб (посередине).


Вверх

Средняя температура поверхности пола

Этот параметр является основным критерием расчета теплого пола в плане комфорта для жильцов. Он представляет собой среднее значение между максимальной и минимальной температурой пола.

По нормам в помещениях с постоянным нахождением людей (жилые комнаты, кабинеты и т.д.) средняя температура пола должна быть не выше 26°С. В помещениях с повышенной влажностью (ванные, бассейны) или с непостоянным нахождением людей температура пола может составлять до 31°С.

Температура пола в 26°С не обеспечивает ожидаемого комфорта для ступней. В частном доме, где никто не вправе владельцу указывать какой температурой обогревать жилье, можно настраивать среднюю температуру пола в 29°С. При этом ступни будут ощущать комфортное тепло. Поднимать температуру выше 31°С не стоит - это приводит к высушиваю воздуха.


Вверх

Тепловой поток вверх

Тепловой поток вверх - тепло, отдаваемое теплым полом на обогрев помещения.

Если водяной теплый пол является единственным источником тепла, то тепловой поток вверх должен немного превышать теплопотери помещения.

При использовании теплого пола в комбинации с радиаторами, он компенсирует лишь некоторую часть теплопотерь.


Вверх

Тепловой поток вниз

Это тепло, уходящее в перекрытие и нижнее помещение, т.е. тепловые потери. Тепловой поток вниз должен быть как можно меньше. Добиться этого можно увеличением толщины утеплителя.


Вверх

Суммарный тепловой поток

Мощность теплого пола, включающая полезное тепло (обогрев помещения) и теплопотери (тепловой поток вниз).


Вверх

Удельный тепловой поток вверх

Полезное тепло, идущее на обогрев помещения, выделяемое каждым квадратным метром теплого пола.


Вверх

Удельный тепловой поток вниз

Теплопотери каждого квадратного метра теплого пола.


Вверх

Суммарный удельный тепловой поток

Количество тепла, выделяемого каждым квадратным метром теплого пола, на обогрев помещения и на теплопотери вниз.


Вверх

Расход теплоносителя

Величина расхода необходима для правильной балансировки нескольких контуров теплых полов, подключенных к одному коллектору. Полученное значение нужно выставить на шкале расходомера.



Вверх

Скорость теплоносителя

От скорости движения теплоносителя по трубе теплого пола зависит акустический комфорт в отапливаемом помещении. Если скорость теплоносителя превышает 0,5 м/с, то возможно образование посторонних звуков от циркуляции теплоносителя. Снижения скорости теплоносителя можно добиться увеличением диаметра трубы или уменьшением ее длины.


Вверх

Перепад давления

По перепаду давления в контуре теплого пола (между подающим и обратным коллектором) подбирается циркуляционный насос. Напор насоса должен быть не меньше, чем перепад давления в самом нагруженном контуре. Если напор насоса ниже перепада давления в контуре, то следует выбрать более мощную модель или уменьшить длину контура.


Вверх

Cover_print_c корешком

%PDF-1.7 % 69 0 obj > stream Adobe Illustrator CC 2017 (Windows) 2020-01-13T13:37:35+03:00 2020-01-13T13:37:34+04:00 2020-01-13T13:37:35+03:00 application/pdf

  • Cover_print_c корешком
  • fetisoveg
  • Adobe PDF library 15.00 xmp.did:c85e3e20-9128-eb41-9a5b-fc9866ed43cc uuid:e412d3df-b55d-4206-abbb-e1040e53d2df uuid:1ceb498f-0e69-4e86-802a-6a03f1ffda7f proof:pdf uuid:35ab0aa7-5b40-42b8-857f-082e90d6ebce xmp.did:27a2b14a-0012-e04f-81ca-232733446a3e uuid:1ceb498f-0e69-4e86-802a-6a03f1ffda7f proof:pdf
  • saved xmp.iid:e594d6f5-21a2-9e46-88f1-4eae9e6a31e0 2019-01-22T16:00:35+03:00 Adobe Illustrator CC 22.1 (Windows) /
  • saved xmp.iid:c85e3e20-9128-eb41-9a5b-fc9866ed43cc 2020-01-13T13:37:20+03:00 Adobe Illustrator CC 2017 (Windows) /
  • 1 False True 922.062988 661.276001 Points
  • Cyan
  • Magenta
  • Yellow
  • Black
  • Группа образцов по умолчанию 0
  • 21.0.0 endstream endobj 68 0 obj > endobj 70 0 obj > endobj 73 0 obj > stream HyTSwoɞc [5laQIBHADED2mtFOE.c}08׎8GNg9w߽

    Расчет теплого пола: водяного, электрического, таблицы, примеры

    Подогрев пола — удивительно комфортная вещь. Понимаешь это побывав в доме с таким отоплением и невольно задумываешься о том, а не сделать ли себе. Чтобы принять решение, да и выбрать способ подогрева, нужно прикинуть объем работ, материалов и стоимость всей затеи. Поможет в этом расчет теплого пола. Это только часть всего что надо. Ведь нужны будут еще термостаты, датчики температуры, в водяном полу — коллекторы и расходомеры. 

    Содержание статьи

    Теплый или комфортный пол

    Сразу стоит разобраться в терминологии и в назначении подогрева пола. Могут быть две ситуации:

    Это разделение неофициальное, но так будет проще понять, какой именно подход вам выбрать при расчете и проектировании. А подходы разные, так как требования отличаются.

    Теплопотери что это и где их взять

    Расчет теплого пола делают по каждому помещению, в котором он будет уложен. Основан он на том, что вы знаете теплопотери дома в целом и в каждом помещении конкретно. Теплопотери — это то количество тепла, которое требуется возместить, чтобы поддерживать определенную/желаемую температуру. Теплопотери зависят от толщины и материала стен, от типа окон/дверей, от того как сделан пол, отапливаемое внизу помещение или нет, какой потолок, чердак, как это все утеплено. В общем, критериев масса. Учитывается все это в теплотехническом расчете.

    Количество тепла для поддержания нужной температуры очень зависит от материала наружных стен и утепления Количество тепла для поддержания нужной температуры очень зависит от материала наружных стен и утепления

    Теплотехнический расчет можно сделать самостоятельно (есть достаточное количество калькуляторов, методик), можно заказать в строительной организации. Для примерных прикидок можно воспользоваться усредненными нормами. Так считают, что для отопления одного квадратного метра в Средней полосе России требуется 100 Вт на квадратный метр площади. Это при условии, что утепление — среднее, высота потолков — 2,2-2,7 м, наружных стен не более чем две.

    Примерные теплопотери для разных технологий строительства Примерные теплопотери для разных технологий строительства

    Если утепление ниже среднего или потолки выше, регион более северный — эти показатели приводят к увеличению теплопотерь. Соответственно, наоборот, чем менее суровые зимы и лучше утепление, тем меньше требуется тепла. Подкорректировав таким образом норму, можно сделать более-менее точный расчет теплого пола, но всегда лучше взять с запасом — чтобы не мерзнуть.

    Расчет водяного теплого пола

    Водяной теплый пол — это трубы, уложенные в конструкции пола, по которым бежит теплоноситель. Это сложная система с большим количеством материалов и узлов. Обустройство водяного теплого пола — длительная и дорогостоящая затея. Но, в процессе эксплуатации, тепло обходится дешевле. По этим причинам водяной подогрев пола, обычно, делают в качестве основного или дополнительного источника тепла. Слишком много возни и затрат «только ради комфорта», но бывают и такие варианты. Водяной комфортный пол делают в процессе капитального ремонта или строительства.  В таком случае слишком большой разницы нет.

    Расчет водяного теплого пола проводят по каждой комнатеРасчет водяного теплого пола проводят по каждой комнате

    Методика расчета водяного пола как основного источника тепла

    При планировании теплого пола стоит заранее определиться с тем, где будут стоять крупные предметы мебели. Делать подогрев под шкафом или диваном не слишком разумно. К тому же это может повредить мебели. Определив зоны без подогрева, высчитываем «площадь рабочей поверхности» теплого пола. Этот тот участок, на котором будут укладываться трубы. В случае с водяным полом этим можно пренебречь, так как перегрев пола ни к чему не приведет. Если вы знаете, что теплопотери большие, то разумнее за «рабочую» принимать всю площадь. Так как метраж трубы получится большим, а ее надо как-то уложить.

    Наиболее популярные схемы укладки труб водяного теплого пола. Оптимальный - улитка Наиболее популярные схемы укладки труб водяного теплого пола. Оптимальный — улитка

    Далее расчет теплого пола водяного типа такой:

    1. Выясняем какую температуру будем поддерживать в помещении.
    2. Находим теплопотери помещения.
    3. Делим теплопотери на «рабочую» поверхность. Получаем сколько тепла должны получать с квадратного метра площади теплого пола.

    В принципе, уже тут можно подбирать диаметр трубы теплого пола, разрабатывать схему и шаг укладки труб, рассчитывать режимы работы котельного оборудования. Но стоит еще учесть тип напольного покрытия. Каждое покрытие «отбирает» часть тепла. Какие-то больше (ламинат, линолеум), какие-то меньше (плитка). Соответственно, требуется учесть и эти теплопотери.

    Максимальная температура пола в зависимости от назначения помещения Максимальная температура пола в зависимости от назначения помещения

    При расчетах надо будет определить температуру пола. Она не должна превышать нормы. Они регламентированы СНиПом. Выдержка приведена в таблице. Указаны максимально допустимые значения. Можно, конечно, и больше — если вы теплолюбивы, но закладывают более высокие значения редко. Если при расчетах оказывается, что температура пола слишком высока, надо либо уменьшать срочно теплопотери, либо устанавливать дополнительные источники тепла. Так расчет теплого пола помогает оптимально организовать отопление.

    Пример расчета и подбора параметров водяного теплого пола

    Пусть надо сделать подогрев пола в помещении площадью 18,2 квадратных метров (в таблице это помещение под номером 8) и теплопотерями 1,37 кВт. Для начала рассчитываем сколько тепла должен давать квадратный метр подогреваемого пола. Переводим К Вт в ватты. Для этого умножаем цифру на 1000. Получаем 1370 Вт. Теперь делим на площадь комнаты (или отапливаемой части, если они отличаются). В нашем случае 1370 Вт / 18,2 м² = 75 Вт/м².  То есть, нам надо получать 75 Вт тепла с каждого квадратного метра.

    Пример расчета теплопотерь по помещениямПример расчета теплопотерь по помещениям

    Идем на сайт выбранного производителя труб для теплого пола и смотрим, какие трубы вам подходят. Найти эти данные не так просто, так как зависит от толщины стяжки и рабочих температур теплоносителя. Исходя из этого считают теплоотдачу одного квадратного метра. Для простоты можно воспользоваться готовыми данными, сведенными в таблице. Например, для PE-X трубы диаметром 16 мм и толщиной стенки 2 мм.

    В спальне нам нужна температура пола около 26°C, будет уложен ламинат. Теперь смотрим в таблице соответствующий столбик. Видим, что обеспечить такой режим можно только с шагом укладки трубы 100 мм и температуре подачи и обратки 50 и 40°C. С таким шагом при схеме укладки змейкой на один квадратный метр уйдет 9 метров трубы. А на всю площадь потребуется 9 м*18,2 = 163,8 метра трубы. Это очень длинный контур. Придется на одну комнату делать несколько контуров, а это дополнительные расходы на оборудование (гребенка, смесительные клапана, термостаты и т.д.). «Нормальной» считается длина одного контура 60-70 метров. Так что придется делать 2 контура.

    Расчет трубы PE-X диаметром 16 мм и толщиной стенки 2 мм для теплого пола Расчет трубы PE-X диаметром 16 мм и толщиной стенки 2 мм для теплого пола

    Есть еще несколько вариантов. Первый — использовать трубу большего диаметра. 20 мм или 22-24 мм. Тогда можно будет уменьшить шаг укладки, сократить расход трубы и сделать  меньшее количество контуров. Второй — сделать стяжку теплого пола с повышенной теплопроводностью. Для этого в раствор добавляют специальные добавки.

    Если использовать «средние показатели»

    На основании работы многих полов с водяным подогревом, опытным путем выведены «средние показатели»  для различных напольных покрытий. Так известно, что используя трубу 16 мм в диаметре, с шагом 250 мм, со слоем ЦСП 30 мм над поверхностью трубы можно получить такое количество тепла:

    • 50-65 Вт с квадрата если напольное покрытие керамическая плитка.
    • 25-35 Вт с квадратного метра если использован ламинат.
    • 35-45 Вт для линолеума, предназначенного под укладку на теплый пол.
    Это коллекторы (гребенка) теплого пола с подключенными к ним трубами. Параметры труб определяет расчет теплого пола, а затем их через коллекторы подключают к котлуЭто коллекторы (гребенка) теплого пола с подключенными к ним трубами. Параметры труб определяет расчет теплого пола, а затем их через коллекторы подключают к котлу

    Если использовать эти данные расчет теплого пола вообще простой. Берете квадратуру комнаты, умножаете на количество тепла, которое можно «снять» с квадрата. Если цифра больше либо равна теплопотерям, значит можно делать так *шаг 250 мм, труба 16 мм, ЦСП толщиной 30 мм над трубой. Если полученное значение меньше, можно проблему решить следующими способами:

    • Добавить другой тип отопления.
    • Взять большего диаметра трубу.
    • Уменьшить шаг укладки трубы.
    • Улучшить теплопроводность стяжки.
    • Улучшить теплоизоляцию.

    В принципе, можно применить один из вариантов, можно несколько. Самый здравый — улучшить теплоизоляцию, но сделать это далеко не просто, не быстро и далеко не дешево. Но это вложение позволит сэкономить на счетах за отопление, так что в длительной перспективе это самый разумный выход.

    Как рассчитать как рассчитать мощность теплого пола для комфорта

    Если теплый пол лишь для комфорта, особенно заботиться о его мощности нет необходимости. Надо исходить из комфортной температуры пола.

    Средние температуры пола для разных покрытий, которые люди считают комфортными Средние температуры пола для разных покрытий, которые люди считают комфортными

    Вообще для создания комфортной температуры шаг укладки трубы теплого пола берут 250 мм (межосевое расстояние). Выбирают любую схему укладки. Важно сделать пол без явно выраженных перепадов температур. Это достигается, если над трубой слой стяжки будет порядка 30-35 мм. Можно и больше, прогрев будет равномернее, но система будет более инерционной (дольше будет греться и остывать). Вообще, система водяного подогрева пола очень гибкая. Одну задачу можно решить несколькими способами. Важно найти оптимальное решение.

    Как рассчитать электрический теплый пол

    Методика расчета аналогична тому, что написано про водяной пол. Необходимо знать теплопотери и способ использования подогрева пола, мощность одного метра греющего элемента. В данном случае все несколько проще, потому что электрические материалы для нагрева пола имеют конкретную цифру, которой производители обозначают максимальную теплоотдачу. Больше заявленной цифры они выдать не в состоянии. Потому расчет теплого пола с электрическим подогревом более прост и понятен. Тем не менее, остается достаточное количество переменных величин. Это толщина стяжки, ее теплопроводность, теплопроводность финишного напольного покрытия. Их тоже надо учитывать.

    Как рассчитать электрический теплый пол. Зависит от мощности обогревателя на квадратный метр Расчет зависит от мощности обогревателя на квадратный метр

    Эффективная площадь обогрева

    Расчет теплого пола с электроподогревом начинают с определения эффективной зоны обогрева и ее площади. Большая часть нагревательных элементов не переносит перегрева (резистивные кабели, маты из резистивных кабелей, пленочные нагреватели и инфракрасные маты). Исключение — саморегулирующиеся греющие кабели, но они стоят дорого, поэтому их применяют редко. Хотя, есть и сами кабели и маты из них.

    Еще раз: электрические греющие элементы пола укладывают только на той площади, где не будет стоять мебель и/или сантехника, лежать ковры и т.д. То есть, электрический теплый пол кладут там, где будет постоянный и определенный расход тепла.

    Чтобы рассчитать кабель для теплого пола надо сначала определиться с площадью, на которой он будет укладываться Чтобы рассчитать кабель для теплого пола надо сначала определиться с площадью, на которой он будет укладываться

    Перед началом расчета предполагаемые места под мебель/сантехнику/ковры очерчиваем, считаем оставшуюся площадь. Это и будет эффективная площадь обогрева. Ее дальше используем в расчетах.

    Как рассчитать метраж греющего кабеля для пола

    Методика расчета основывается на том количестве тепла, которое надо восполнить (теплопотери) и эффективной площади отопления. Теплопотери делим на эффективную площадь обогрева. Получаем требуемую тепловую мощность, которую мы должны получить с квадратного метра площади с уложенным нагревательным элементом.

    Например, площадь комнаты 16 квадратов, на 4 квадратах будет располагаться мебель. Обогреваемая зона — 16 кв. м — 4 кв. м = 12 кв. м. Теплопотери помещения — 1100 Вт. Узнаем сколько надо мощности с одного метра: 1100 Вт / 12 м² = 92 Вт/м².

    Как рассчитать кабель для теплого пола - по площади и мощности метра Расчет греющего кабеля по площади помещения и мощности метра

    Далее смотрим мощность кабелей для обогрева пола. Например, мощность одного метра — 30 Вт. Чтобы получить 92 Вт на квадратном метре, надо уложить чуть больше чем три метра кабеля. Вполне реальная задача. При разработке схемы, помните, что лучше, чтобы для стяжки высотой 3-4 см расстояние между проводами не превышало 25 см. Иначе пол будет иметь ярко выраженные «полосы» — чередующиеся зоны тепла и холода.

    Есть и другой способ. Купить готовый набор кабеля определенной мощности. Ищите подходящую мощность и площадь укладки. Имеете все в комплекте.

    Расчет теплого пола с кабельными матами

    Суть расчета не изменяется. Также нужны теплопотери и эффективная площадь укладки. Это тот же кабель, но предварительно закрепленный на полимерной сетке. Такой обогревательный элемент проще в укладке. Применяется чаще всего под плитку. Просто раскатывается на подготовленное основание, сверху кладется плитка на специальный клей.

    Греющие маты продаются обычно в готовом к укладке виде Греющие маты продаются обычно в готовом к укладке виде

    С полом такого типа все просто. Он продается кусками определенной мощности на определенную площадь. Всего-то и надо, что найти тот вариант, который вам подходит.

    Рассчитаем пленочный теплый пол

    Пленочный нагревательный элемент продают комплектами и на метры. Подбираете метраж и мощность так, чтобы он давал требуемое количество тепла. Полотнища пленки должны укладываться вплотную друг к другу. Это необходимо, чтобы избежать «полосатости» температур.

    Теплый пол пленочный. Расчет очень прост: подбираем мощность и ширину так, чтобы давали они требуемое количество теплаТеплый пол пленочный. Расчет очень прост: подбираем мощность и ширину так, чтобы давали они требуемое количество тепла

    Ширина пленочного теплого пола — 30 см, 50 см, 80 см и 100 см. Вполне можно в одном помещении использовать разные по ширине. Важно чтобы нагревательные элементы не перегревались.

    Расчет теплого пола для водяного отопления

    Я приветствую моего постоянного читателя и предлагаю вашему вниманию статью об устройстве теплого пола – практически идеального по комфортности способа обогреть дом или квартиру.

    Но трубопроводы, размещенные в полу, – сложная инженерная система, намного более сложная, чем традиционная радиаторная система. Поэтому для монтажных работ обязательно потребуется расчет теплого пола, и в этой статье я расскажу, как выполнить расчеты и какие правила монтажа при этом необходимо учитывать.

    Способы установки теплого пола

    Монтаж водяного теплого пола выполняется двумя способами: настильным и в бетонной стяжке. Оба способа имеют свои преимущества и недостатки.

    Бетонный

    Чаще всего встречается монтаж теплого пола в цементно-песчаной стяжке. Такая стяжка хотя и медленно прогревается, поскольку имеет большую массу, но обладает хорошей теплопроводностью. Конечно, цемент и песок не сравнить с металлами, но настолько быстрая теплоотдача для теплого пола и не требуется. Большая инерционность позволяет создать равномерный обогрев помещения снизу, практически не зависящий от скачков температуры теплоносителя при включении-выключении котла.

    Конструктивно теплый пол имеет следующие слои:

    • Гидроизоляцию.
    • Теплоизоляцию.
    • Трубопровод, залитый цементно-песчаным раствором.
    • Напольное покрытие.

    Недостатком бетонного способа – большой вес, значительный объем трудоемких «мокрых» работ, большой срок созревания раствора – 4 недели. Только полностью созревший бетон приобретет нормативную прочность и не будет выделять влагу.

    Настильный

    Настильный вариант монтажа отопления используется в деревянных домах или в домах с деревянными перекрытиями. Способов сборки теплого пола существует множество:

    1. Укладка утеплителя и трубопроводов между лагами. Годится для пола первого этажа на плитном фундаменте.
    2. Монтаж всех конструкций по черновому полу.
    3. Использование готовых модулей из полистирола и ОСП.
    4. Устройство пазов для труб с помощью досок, полос ОСП, фанеры и других доступных материалов. Этот вариант более дорогостоящий, чем использование цемента и песка.

    Монтаж по сравнению с бетонным методом более легкий и чистый, но трудоемкость также достаточно велика. Процесс упрощает применение пенополистирольных модулей с пазами под трубопровод.

    Способ требует больших расходов на отопление – трубы покрываются досками или ОСП, имеющими невысокую теплопередачу, поэтому температура теплоносителя должна быть выше.

    Какой способ лучше

    Укладка теплого пола в цементном растворе предпочтительнее по двум причинам:

    1. Напольное покрытие укладывается на прочную и идеально ровную поверхность. При укладке настильным способом и покрытии из ламината, плитки или линолеума необходимо настил с трубопроводами перекрывать дополнительно ОСП, фанерой, тонкой доской 25 мм. Увеличиваются расходы на отопление и монтаж.
    2. Трубы в стяжке удалены от напольного покрытия, прогревается сначала стяжка, затем стяжка передает тепло покрытию. Несколько сантиметров цементного раствора имеют немалую инерционность, и поверхность прогревается практически равномерно. При настильной укладке и поверхность прогревается менее равномерно – в морозы при повышении температуры теплоносителя это может быть некомфортно.

    Применение того или иного способа монтажа чаще всего определяется материалом строительных конструкций помещения, которое будет отапливаться.

    На бетонные перекрытия или плиту фундамента практичнее всего уложить утеплитель и залить раствор (если конструкции перекрытия выдержат). Стяжка имеет минимальную толщину 70 мм, ее вес составляет примерно 150 кг на 1 м² перекрытия.

    В доме при устройстве отопления на втором этаже необходимо обратиться к специалисту-строителю и посчитать, выдержит ли перекрытие нагрузку от стяжки. По этой же причине при устройстве отопления в бетонной стяжке в квартире требуется согласование с коммунальными организациями, у которых на балансе находится ваш дом.

    При заливке плитного фундамента в частном доме, при строительстве нового и термомодернизации старого жилья также необходимо сделать расчет дополнительной нагрузки.

    Необходим расчет, на какую высоту можно поднять уровень пола. Подъем напольного покрытия примерно на 150 мм приведет к понижению уровня потолка и уменьшению высоты дверей, да и окна опасно приблизятся к полу. При настильном способе можно сделать конструкции меньшей высоты.

    При монтаже теплого пола в здании с деревянными перекрытиями и на первых этажах вообще вариантов нет: доступен только настильный способ. Нагружать деревянные перекрытия стяжкой невозможно, к тому же полы из досок на лагах прогибаются при динамической нагрузке, и любой раствор рано или поздно потрескается. Зато в пространство между лагами отлично укладывается утеплитель – повышение уровня пола будет не столь критичным.

    В идеальном случае устройство теплого пола учитывают еще на этапе проектирования строительных конструкций жилья. Расчет отопительной системы также лучше доверить профессионалам – при погрешностях подсчетов в комнате может быть недостаточно тепло, а увеличить мощность системы практически нереально. Это не традиционная система с радиаторами, где можно добавить греющий элемент в любой точке системы.

    Способы укладки трубы для теплого пола

    Существуют 4 основных способов укладки трубопроводов:

    1. Змейка. Трубопровод теплого пола размещается параллельно. Прогрев помещения неравномерный.
    2. Угловая змейка. Труба укладывается в углу с поворотом, участки располагаются параллельно первым отрезкам.
    3. Двойная змейка. Начало и конец контура укладываются параллельно. Из всех змеек обеспечивает относительно равномерный прогрев помещения.
    4. Улитка, ракушка, спираль. Начало и конец контура укладывается параллельно и по спирали. Улитка обеспечивает равномерное распределение тепла.

    Какой способ укладки стоит выбрать

    Способ определяется в зависимости от формы и площади помещений.

    Для небольших помещений типа коридоров, ванных комнат, санузлов удобнее использовать змейку, для небольших комнат с одной наружной стеной – двойную змейку. В больших помещениях целесообразнее использовать улитку или комбинированные способы.

    При комбинировании обычно змейкой прокладывают теплый пол вдоль наружных стен или в углу, отсекая холодный воздух от наружных стен и окон. Улиткой размещают трубопроводы в основной части достаточно большого помещения.

    При укладке теплого пола необходимо учитывать, что нельзя размещать коммуникации под мебелью. Желательно монтировать трубы с меньшим шагом в местах работы или отдыха, игровых зонах, детских комнатах, возле письменных и компьютерных столов, мягких уголков, фортепиано, местах, где что-либо мастерят, шьют и т.д.

    Исходные данные для расчета

    Для правильного расчета теплопотерь через пол, крышу, стены, окна, двери необходимо обращаться к квалифицированным строителям. При подсчетах учитываются:

    1. Площадь и планировка здания, состав помещений – количество ванных, детских, вспомогательных и буферных помещений.
    2. Материал стен, потолка, фундамента.
    3. Утепление дома, перекрытий и фундамента.
    4. Конструктив и отделка стен определяет кратность воздухообмена и потери тепла на нагрев воздуха, поступающего при вентиляции помещения.
    5. Количество, площадь и конструкция окон и дверей.
    6. Этажность здания, наличие цокольного этажа, гаража или подвала, конструктив второго этажа (мансарда или полноценный этаж).
    7. Климат региона (средние и минимальные зимние температуры).
    8. Количество людей, проживающих в доме.
    9. Наличие дополнительных систем отопления и источников тепла (печей, каминов, радиаторной системы).

    Определение параметров теплого пола

    Основные параметры системы теплого пола – диаметр труб, длина и количество контуров, расстояние между трубами, температура теплоносителя на входе и на выходе контура. Конечная цель всех теплотехнических расчетов – определение параметров системы, обеспечивающих комфортный температурный режим в доме. Выяснение теплопотерь здания (комнаты), необходимой тепловой мощности системы отопления – промежуточные цели расчетов.

    Методика расчета потерь тепла

    Для частных домов площадью от 50 до 150 кв. м вполне можно воспользоваться примерными расчетами. Следует иметь в виду, что эти примерные расчеты верны для современных утепленных домов – из пено- или газобетона, керамического блока или утепленных теплоизоляционными материалами слоем не меньше 200 мм.

    Для старых домов с толщиной стены «в два кирпича», «в один шлакоблок» эти данные не подходят. Если собираетесь в дальнейшем утеплить дом, а пока дошла очередь только до заливки плитного фундамента внутри старого дома и устройства теплого пола, то можно воспользоваться этими данными, но временно отапливать и с помощью водяного теплого пола, и радиаторами. При сильных морозах или в северных регионах России одного напольного отопления может не хватить.

    Данные для ориентировочных расчетов теплопотерь отдельных комнат в частном доме:

    1. Для комнаты с 1 окном и 1 внешней стеной принимают теплопотери 100 Вт с 1 м² площади.
    2. Для комнаты с 1 окном и 2 наружными стенами принимают теплопотери 120 Вт с 1 м².
    3. Помещение с 2 окнами и 2 внешними стенами – теплопотери 130 Вт с 1 м².

    Теплопотери каждой комнаты высчитывают, умножив площадь на потери 1 м² и коэффициент 1,2 – потери на нагрев стяжки и нижележащих конструкций. Если ваш дом находится в северных районах или Сибири, увеличьте потери еще на 20% (коэффициент 1,2). Рассчитанные по площади потери умножают на оба коэффициента (т.е. на 1,44).

    По более точной формуле получают расчет теплопотерь через конструкции дома. В интернете полно онлайн-калькуляторов, с помощью которых можно рассчитать точно все теплопотери дома.

    Общие теплопотери равны сумме потерь через пол, стены, окна и потолок и потерь на нагрев поступающего воздуха.

    Qобщ = Qтп + Qв

    Формула для расчета теплопотерь через конструкции (параметр определяется отдельно для всех стен и других элементов – потолка, окон, дверей):

    Q = 1/R * ∆t* S *k

    • R – сопротивление теплопередаче – табличное значение. Можно рассчитать как отношение толщины конструкции и коэффициента теплопроводности материала конструкции (табличное значение).
    • ∆t — разница температур внутри и снаружи здания, ∆t = tв — tн, tн – применяют минимальную зимнюю температуру в вашей местности.
    • S – площадь конструкции (наружная, с захватом углов здания).
    • k – коэффициент, зависящий от ориентированности наружной стены по сторонам света. Для юга и юго-запада k равен 1, для запада и юго-востока – 1,05, для остальных направлений – 1,1.

    Коэффициенты теплопроводности несложно найти в справочниках, ниже в таблице приведены коэффициенты некоторых ходовых материалов.

    Наименование материалаКоэффициент теплопроводности,  Вт/(м*°С)
    Бетон1,5
    Красный пустотелый кирпич0,35
    Керамические блоки0,14
    Силикатный кирпич0,7
    Газобетон0,12-0,3
    Древесина0,1-0,15
    Пенополистирол0,028-0,043
    ОСП0,14
    Железобетон1,69

    Соответствующие коэффициенты для окон можно узнать у организации-производителя или установщика.

    Необходимое тепло на нагрев воздуха

    Для более точного расчета мощности системы теплого пола необходимо также учитывать тепло, необходимое для нагрева воздуха, поступающего в помещение и удаляемого через вентиляцию:

    • V – объем комнаты, м³.
    • K – воздухообмен.
    • С – удельная теплоемкость воздуха, при 20 °С равна 1005 Дж/кг*К.
    • P – плотность воздуха при нормальных условиях (давлении 1 атм и температуре 20 °С), Р=1,2250 кг/м³.
    • Δt – разница температур в помещении и вне его.
    • 3600 – для перевода МДж в кВт*ч: 1 кВт*ч= 3,6 МДж.
    • 1,1 – коэффициент для учета потерь через щели, двери и т.д.

    Воздухообмен для всех жилых помещений принимают кратным единице в час. Для помещений с повышенной влажностью – ванных, саун, санузлов – кратным 2.

    Например, для комнаты площадью 20 м, высотой 3 м, при температуре вне помещения -20°С, в помещении +20°С, тепло, необходимое для нагрева воздуха, будет равно:

    Расчеты проводят для самой холодной зимней температуры.

    Пример расчета

    Рассчитаю для примера сумму теплопотерь комнаты с одним окном, одной наружной стеной, площадью 20 м², высотой 3 м. Площадь окна 2 м², площадь наружной стены 12 м², стены – газобетон толщиной 300 мм. Ориентация – северо-запад. Пол и потолок утеплены пенополистиролом слоем 200 мм. Самая холодная температура зимой -20°С.

    R – сопротивление теплопередаче газобетона – равен 0,3/0,15 = 2, где 0,3 – толщина стены, 0,15 – коэффициент теплопроводности.

    • Qнар. стены = 1/R * ∆t* S *k = (1*40*10*1,1)/2= 440 Вт.
    • Qокна = 1/R * ∆t* S * k = (1*40*2*1,1)/0,5 = 176 Вт.
    • Q потолка = 1/R * ∆t* S * * k = (1*40*20*1,1)/67= 14 Вт, где R для слоя пенополистирола = 0,2/0,03 = 67.

    Если для утепления используется толстый слой пенополистирола или минваты, то сопротивлением остальных конструктивных элементов стены, пола или потолка можно пренебречь.

    Q потолка = Q пола= 14 Вт

    Общие теплопотери равны сумме потерь через пол, стены, окна и потолок и потерь на нагрев поступающего воздуха.

    Qобщ = Qтп + Qв= 440+176+14+14+887= 1531 Вт

    Расчет необходимой мощности контура (см. ниже):

    Qк= Qобщ*1,2 = 1531*1,2= 1837 Вт

    Расчет мощности контура

    Расчет необходимой мощности контура (и котла) теплого пола производится с учетом потерь:

    Qк= Qобщ*1,2,

    где коэффициент 1,2 применяется для учета потерь тепла (например, на нагрев стяжки, коллектора и т.д.).

    Расчет необходимого количества труб

    Точный расчет количества труб зависит от множества параметров: температуры и скорости теплоносителя, материала, диаметра и толщины стенки труб, необходимой мощности системы, числа контуров в помещении, мощности насоса. Поэтому точный расчет лучше доверить специалистам.

    Для примерных расчетов предлагаю таблицу.

    Шаг, смДиаметр, ммСредняя температура теплоносителя, °СКоличество трубы на 1 м², м.п.Количество трубы на 20 м², м.п.
    102031,510200
    3632,5
    152033,56,7134
    3635
    202036,55100
    3637,5
    252038,5480
    3640
    302041,53,468

    При расчетах теплого пола отталкиваются от частоты укладки, обеспечивающей использование теплоносителя с температурой 37°С, тогда на поверхности пола температура не будет превышать нормативные 26°С. Длину трубопровода на 1 м² берут из таблицы – 5 м.п. на 1 м². Реальную пересчитывают с помощью коэффициентов.

    Для угловых комнат с одним окном умножают эту длину на 1,2; с двумя окнами – на 1,3. Умножают на региональный коэффициент. Для центральных районов России – 1,2-1,3, для Сибири и Севера – 1,5-2, для южных – 0,7-0,9.

    Например, для угловой комнаты площадью 24 м² с двумя окнами и в холодном регионе России протяженность трубопровода будет:

    Выбор шага укладки

    Шаг укладки зависит от получившейся длины трубопровода (см. выше). Сначала рассчитывается, сколько метров надо отопить – отапливаемая площадь комнаты за вычетом мебели, например, 20 м²). Затем рассчитывается фактическая длина трубы на один квадратный метр пола:

    При раскладке труб по полу шаг можно варьировать – при шаге в 15 см в зоне мягкого уголка будет немного теплее, а при шаге 20 см в центре помещения – немного прохладнее.

    Расчет циркуляционного насоса

    Для выбора подходящего циркуляционного насоса необходимо определить основные параметры – напор и расход (производительность). Расход теплоносителя рассчитывается по сумме расхода всех контуров. Напор принимается максимальный в самом протяженном контуре.

    Для вычисления производительности в системах с теплоносителем-водой используют следующую формулу:

    Рк = 0,86*Pн/(tпр – tобр), где

    • Pн — мощность отопительного контура, кВт, складывают мощность всех контуров.
    • tобр — температура теплоносителя в обратке.
    • tпр — температура подачи.

    Разницу температур принимают обычно равной 5 °С.

    Напор насоса рассчитывают по самому длинному контуру. Используют формулу:

    ∆ Н = L х Q² / k, где

    • ∆ Н – гидравлические потери.
    • L – длина контура.
    • Q – расход воды в л/с.
    • k – коэффициент расхода, для приближенных расчетов частного дома принимают 0,3-0,4 л/с.

    Напор насоса должен быть равен или немного больше значения гидравлических потерь. Для обеспечения различных режимов работы обычно выбирают трехскоростные насосы, причем выбор осуществляют по параметрам при работе на второй скорости (чтобы был запас мощности на случай холодов).

    Рекомендации по выбору толщины стяжки

    Минимальная толщина стяжки – 50 мм над системой теплого пола. Она же и оптимальная. 50 мм стяжки обеспечивают достаточно прочное покрытие и в то же время ограничивают инерционность системы.

    Большая толщина стяжки чрезмерно нагружает конструкцию и давит на трубопроводы, а также увеличивает трудозатраты и время вызревания бетона. Поэтому без необходимости не следует утолщать стяжку.

    Применение более толстой стяжки оправдано только в том случае, если необходимо выровнять разноуровневый пол или в производственных помещениях с большой динамической нагрузкой на пол. При толщине заливки 80-100 мм желательно прокладывать трубопроводы в защитном чехле из гофры.

    Нежелательно и уменьшать толщину стяжки менее 40 мм над уровнем теплого пола – слой раствора защищает трубы от давления мебели и от нагрузки при движении людей или крупных животных.

    Этапы установки пола

    До укладки утеплителя пол необходимо тщательно выровнять. Затем укладывается утеплитель, гидроизоляция, трубы, заполняются теплоносителем, опрессовываются, заливаются раствором. После созревания раствора монтируется напольное покрытие.

    Установка теплоизоляции

    В качестве теплоизоляции используют прочный вспененный экструдированный (экструзионный) полистирол (пеноплекс, пенопласт, пенополистирол) с плотностью не менее 30-35 кг/м³. Пенополистирол обладает не только высокой прочностью, но и не впитывает влагу, не гниет, плохо поддерживает горение.

    Толщина пенополистирола в межэтажных перекрытиях должна составлять не менее 100 мм, на фундаменте – не менее 200 мм. Иногда применяют специальные плиты для теплого пола с пазами под трубопроводы и покрытые фольгой. Вдоль стены закрепляется демпферная лента или полоска пенофола подходящего размера.

    Установка гидроизоляции

    На теплоизоляционные плиты укладывают гидроизоляционную пленку. Бывают варианты с разметкой в виде квадратов, фольгированные.

    Укладка и закрепление труб

    На гидроизоляцию укладывают трубы теплого пола в соответствии со схемой. Гибку труб при укладке выполняют при помощи шаблона или трубогиба, нужно следить, чтобы не было перегибов, трещин, складок.

    Желательно составить схему и сделать расчеты так, чтобы длина контуров не превышала 100 м. При увеличении метража насос не будет продавливать теплоноситель, и температура этого контура уменьшится.

    Если теплоизоляционные плиты не имеют пазов, то трубы крепят к плитам специальными шпильками или скобами, или с помощью монтажных планок с замками. Трубопровод, даже с водой, имеет меньшую плотность, чем цементный раствор, и при заливке будет подниматься («всплывать») наверх. Поэтому теплый пол нужно закреплять в нижнем положении.

    Опрессовка

    После укладки коммуникации обрезают возле коллектора, с помощью фитингов присоединяют к коллектору, заполняют трубопровод водой. Давление доводят до 0,6 МПа (придется использовать отдельный насос) и оставляют систему с водой на сутки-двое. В первые дни объем воды в трубопроводе может немного увеличиваться. Температуру также доводят до рабочей. Несколько раз стравливают воздух и добавляют воду.

    Заливка бетонным раствором

    После опрессовки укладывают сетку с ячейкой 50×50 мм и заливают систему раствором. Трубопровод при этом должен быть заполнен теплоносителем под давлением 0,3 МПа, или 3 атм. Для приготовления раствора используют специальную смесь или в обычную цементно-песчаную смесь добавляют пластификаторы для теплого пола.

    Желательно накрыть стяжку полиэтиленом или увлажнять поверхность раствора. Но в больших комнатах увлажнять невозможно, поэтому применение полиэтилена предпочтительней. Уже через 10 дней по стяжке можно пройти, но стелить напольное покрытие можно только через 3 недели – до того раствор будет выделять влагу.

    Как и где необходимо устанавливать коллекторный шкаф

    Коллекторный шкаф устанавливают либо в котельной, либо в подсобных помещениях – коридорах, кладовых. Оптимальное место – в центре отапливаемого этажа (чтобы уменьшить длину коммуникаций). В большом доме придется устанавливать больше одного коллекторного шкафа. При выборе места следует учитывать, что в узле подмеса находится насос, который при работе негромко шумит. Поэтому в жилых комнатах коллекторные шкафы не устанавливают.

    Заключение

    До свидания, мой любимый читатель. В этой статье описаны принципы расчета системы теплого пола. Если вы собрались монтировать отопление своими руками, сможете и рассчитать систему. Хотя для большого дома лучше доверить расчеты специалистам. Приводите на сайт новых читателей, делитесь интересной информацией с друзьями в соцсетях.

    Загрузка...
    Онлайн калькулятор расчета водяного теплого пола в зависимости от помещения

    Калькулятор  расчета теплого пола  и систем отопления. Разгрузить систему радиаторного отопления дома или полностью ее заменить, при достаточной тепловой мощности  водяного теплого пола будет хватать для компенсации тепло потерь и обогрева помещения.

    Как сделать расчет теплого водяного пола онлайн? Водяные полы могут служить основным источником обогрева помещения, а также выполнять дополнительную функцию отопления. Делая расчет этой конструкции нужно заранее решить основные моменты, для какой цели будет служить изделие, полноценно обеспечивать дом теплом или слегка подогревать поверхность для комфортности в помещении.

    Если вопрос решен, то следует переходить к составлению конструкции и расчета мощности теплого водяного пола. Все ошибки, которые будут допущены на стадии проектирования, можно будет исправить только путем вскрытия стяжки. Вот почему так важно правильно и максимально точно сделать предварительные расчетные процедуры.

    Расчет теплого водяного пола с помощью калькулятора онлайн

    Благодаря специально подготовленным системам онлайн расчетов сегодня можно за несколько секунд определить удельную мощность теплого пола и получить необходимые расчеты.

    В основу калькулятора входит метод коэффициентов, когда пользователь вставляет индивидуальные параметры в таблицу и получает базовый расчет с определенными характеристиками.

    Внеся все заданные коэффициенты можно с максимальной точностью получить точные характеристики рассчитываемого теплого пола. Для этого нужно знать данные:

    • температуру подачи воды;
    • температуру обработки;
    • шаг и вид трубы;
    • какое будет напольное покрытие;
    • толщина стяжки над трубой.

    В результате пользователь получает данные про удельную мощность конструкции, среднюю температуру получаемого обогрева пола, удельный расход теплоносителя. Выгодно, быстро и предельно ясно за несколько секунд!

    Кроме основных данных следует учитывать ряд второстепенных, которые максимальным образом влияют на конечный результат теплого пола:

    • наличие или отсутствие остекления балконов и эркеров;
    • высота этажа помещения в жилом доме;
    • присутствие специальных материалов для утепления стен;
    • уровень теплоизоляции в доме.

    Внимание: делая расчет теплого пола водяного калькулятором, следует учитывать вид полового покрытия, если планируется укладываться древесная конструкция, то мощность обогревающей системы должна быть увеличена за счет низкой теплопроводностью дерева. При высоких теплопотерях обустройство теплого пола в качестве единственной системы обогрева будет неуместно и невыгодно по затратам.

    Особенности расчета водяного пола калькулятором.

    Прежде чем сделать предварительный расчет системы обогрева водяного пола следует учитывать целый перечень особенностей:

    1. Какой вид трубы будет использовать мастер, гофрированную с эффективной теплоотдачей, медную, с высокой теплопроводностью, из сшитого полиэтилена, металлопластиковые или из пенопропилена, с низкой теплоотдачей.
    2. Расчет длины для обогрева заданной площади, основывается на определении длины контура, распределение тепловой энергии по поверхности в равномерном режиме, с учетом пределов тепловой нагрузки покрытия.

    Важно! Если планируется делаться шаг укладки больше, тогда нужно увеличить температуру теплоносителя. Допустимые показатели шага — от 5 до 60 см. Можно использовать как постоянные, так и переменные шаги.

    Ошибки новичков — рекомендации профессионалов

    Многие пользователи калькулятора онлайн расчета водяного теплого пола допускают существенные ошибки, которые влияют на конечные результаты. Вот некоторые погрешности пользователей:

    • На один контур рассчитана труба длиной не более 120 м.
    • Если теплые полы будут в нескольких комнатах, то средняя длина контура должна быть приблизительно одинаковой, отклонения не должны превышать 15 м.
    • Расстояние между ветками выбирается в соответствии с температурным режимом системы отопления, чаще всего это будет зависеть от региона территории.
    • Средне значение расстояние от стен до контура составляет 20 см, плюс-минус 5 см.

    Что нужно знать, отправляясь за необходимыми строительными материалами?

    Экструдированный пенополистирол является наилучшим материалом в случае утепления пола, он отличается долговечностью и монолитностью структуры. Сверху утеплителя следует уложить гидроизоляцию, достаточно будет полиэтиленовой пленки, а вдоль стен нужно уложить демпферную ленту.

    Арматура является основой для крепления труб и бетонной стяжки, скобы для труб – еще один обязательный элемент. Также следует взять распределяющийся коллектор, который позволит экономно и эффективно распределить теплоноситель.

    Заключение

    Делая расчет водяного пола онлайн, следует учитывать коэффициент расхождения данных на 10%, таким способом полученные данные будут более реальными и достоверными.

    Удачи Вам в строительных работах!

    БТЕ Калькулятор

    AC BTU Калькулятор

    Используйте этот калькулятор для оценки потребностей в охлаждении типичной комнаты или дома, например, для определения мощности оконного кондиционера, необходимого для жилой комнаты или центрального кондиционера для всего дома.


    Калькулятор общего назначения переменного или нагрева BTU

    Это калькулятор общего назначения, который помогает оценить BTU, необходимые для обогрева или охлаждения области. Требуемое изменение температуры - это необходимое увеличение / уменьшение температуры наружного воздуха для достижения желаемой температуры в помещении.Например, в Бостоне без отопления зимой температура может достигать -5 ° F. Для достижения температуры 75 ° F требуется повышение температуры на 80 ° F. Этот калькулятор может только оценить приблизительные оценки.

    Что такое BTU?

    Британская тепловая единица, или BTU, является энергетической единицей. Это примерно энергия, необходимая для нагрева одного фунта воды на 1 градус Фаренгейта. 1 БТЕ = 1 055 Дж, 252 калории, 0,293 Ватт-час или энергии, выделяемой при сжигании одной спички.1 ватт - это примерно 3,412 БТЕ в час.

    БТЕ часто используется в качестве ориентира для сравнения различных видов топлива. Несмотря на то, что они являются физическими товарами и соответственно количественно определены, например, по объему или в бочках, они могут быть преобразованы в БТЕ в зависимости от энергии или теплосодержания, присущего каждой величине. BTU как единица измерения более полезна, чем физическая величина, поскольку внутренняя стоимость топлива является источником энергии. Это позволяет сравнивать и сопоставлять множество различных товаров с собственными энергетическими свойствами; например, одним из самых популярных является природный газ для нефти.

    BTU также может использоваться прагматично в качестве ориентира для количества тепла, которое генерирует прибор; чем выше показатель BTU прибора, тем больше теплопроизводительность. Что касается кондиционирования воздуха в домах, даже если кондиционеры предназначены для охлаждения домов, BTU на технической этикетке указывают, сколько тепла может отвести кондиционер из соответствующего окружающего воздуха.

    Размер и высота потолка

    Очевидно, что помещение или дом меньшей площади с более короткой длиной и шириной требует меньше БТЕ для охлаждения / нагрева.Тем не менее, объем является более точным измерением, чем площадь для определения использования BTU, потому что высота потолка учитывается в уравнении; Для каждого трехмерного кубического квадратного фута пространства потребуется определенное количество BTU для соответствующего охлаждения / нагрева. Чем меньше объем, тем меньше BTU требуется для охлаждения или нагрева.

    Ниже приведена приблизительная оценка охлаждающей способности, которая необходима системе охлаждения для эффективного охлаждения комнаты / дома, основываясь только на квадратных метрах комнаты / дома, предоставленных EnergyStar.гов.

    Охлаждаемая площадь (квадратные футы) Необходимая мощность (БТЕ в час)
    100-150 5000
    150 до 250 6000
    250 до 300 7 000
    от 300 до 350 8 000
    от 350 до 400 9 000
    400 до 450 10000
    450 до 550 12 000
    550 до 700 14 000
    700 до 1000 18 000
    от 1000 до 1200 21 000
    1200 до 1 400 23 000
    1400 до 1500 24 000
    1500 до 2000 30 000
    от 2000 до 2500 34 000

    Состояние изоляции

    Теплоизоляция определяется как уменьшение теплообмена между объектами, находящимися в тепловом контакте или в диапазоне радиационного воздействия.Важность изоляции заключается в ее способности снизить использование BTU путем максимально возможного управления его неэффективной тратой из-за энтропийной природы тепла - он имеет тенденцию течь от теплого к холодному, пока не исчезнут перепады температур.

    Как правило, новые дома имеют лучшую изоляционную способность, чем старые дома, благодаря технологическим достижениям и более строгим строительным нормам. Владельцы старых домов с устаревшей изоляцией, которые решат провести модернизацию, не только улучшат способность дома к изоляции (что приведет к более дружественным счетам за коммунальные услуги и более теплой зиме), но также оценят стоимость своих домов.

    Значение R - это обычно используемая мера теплового сопротивления или способности тепла переноситься от горячего к холодному через материалы и их сборку. Чем выше значение R определенного материала, тем больше он устойчив к теплопередаче. Другими словами, при покупке домашней теплоизоляции продукты с более высокой R-стоимостью лучше изолируют, хотя обычно они дороже.

    При выборе правильного ввода условия изоляции в калькулятор, используйте обобщенные предположения.Бунгало на пляже, построенное в 1800-х годах без каких-либо ремонтных работ, вероятно, следует отнести к категории бедных. 3-летний дом в недавно развитом сообществе, скорее всего, заслуживает хорошего рейтинга. Окна обычно имеют меньшее тепловое сопротивление, чем стены. Поэтому комната с большим количеством окон обычно означает плохую изоляцию. По возможности старайтесь устанавливать стеклопакеты для улучшения изоляции.

    Желаемое увеличение или уменьшение температуры

    Чтобы найти требуемое изменение температуры для ввода в калькулятор, найдите разницу между неизменной температурой наружного воздуха и требуемой температурой.Как правило, температура между 70 и 80 ° F является комфортной температурой для большинства людей.

    Например, дом в Атланте может захотеть определить использование BTU в зимний период. Зима в Атланте, как правило, колеблется около 45 ° F с вероятностью иногда достичь 30 ° F. Желаемая температура обитателей составляет 75 ° F. Следовательно, желаемое повышение температуры будет 75 ° F - 30 ° F = 45 ° F.

    Дома в более экстремальных климатических условиях, очевидно, потребуют более радикальных изменений температуры, что приведет к большему использованию BTU.Например, отопление дома на Аляске зимой или охлаждение дома летом в Хьюстоне потребует больше БТЕ, чем отопление или охлаждение дома в Гонолулу, где температура обычно держится около 80 ° F в течение всего года.

    Другие факторы

    Очевидно, что размер и площадь дома или комнаты, высота потолка и условия изоляции очень важны при определении количества BTU, необходимых для отопления или охлаждения дома, но есть и другие факторы, которые следует иметь в виду:

    • Количество жителей, проживающих в жилых помещениях.Тело человека рассеивает тепло в окружающую атмосферу, что требует большего количества BTU для охлаждения и меньшего количества BTU для обогрева помещения.
    • Попробуйте установить конденсатор кондиционера на самой тенистой стороне дома, которая обычно находится к северу или востоку от него. Чем больше конденсатор подвергается воздействию прямых солнечных лучей, тем тяжелее он должен работать из-за более высокой температуры окружающего воздуха, которая потребляет больше БТЕ. Мало того, что размещение его в более темном месте приведет к большей эффективности, но это продлит срок службы оборудования.Можно попытаться разместить тенистые деревья вокруг конденсатора, но имейте в виду, что конденсаторы также требуют хорошего окружающего воздушного потока для лучшей эффективности. Убедитесь, что соседняя растительность не мешает работе конденсатора, блокируя приток воздуха в блок и заглушая его.
    • Размер конденсатора кондиционера. Единицы слишком большие, крутые дома слишком быстро. Таким образом, они не проходят запланированные циклы, которые были специально разработаны для завода. Это может сократить срок службы кондиционера.С другой стороны, если устройство слишком маленькое, оно будет работать слишком часто в течение дня, также перегружая себя до изнеможения, потому что оно не используется эффективно по назначению.
    • Потолочные вентиляторы
    • могут помочь снизить использование BTU за счет улучшения циркуляции воздуха. Любой дом или комната может стать жертвой мертвых зон или определенных областей неправильного воздушного потока. Это может быть задний угол гостиной за диваном, ванная комната без вентиляции и большого окна или прачечная. Термостаты, помещенные в мертвые зоны, могут неточно управлять температурой домов.Работающие вентиляторы могут помочь равномерно распределить температуру по всей комнате или дому.
    • Цвет крыш может влиять на использование BTU. Более темная поверхность поглощает больше лучистой энергии, чем более светлая. Даже грязно-белые крыши (с заметно более темными оттенками) по сравнению с более новыми, более чистыми поверхностями привели к заметным различиям.
    • Снижение эффективности обогревателя или кондиционера со временем. Как и у большинства приборов, эффективность обогревателя или кондиционера уменьшается с ростом использования.Обычно кондиционер теряет 50% и более своей эффективности при работе с недостаточным количеством жидкого хладагента.
    • Форма дома. Длинный узкий дом имеет больше стен, чем квадратный дом с такими же квадратными метрами, что означает потерю тепла.
    ,
    PDH Курсы онлайн. PDH для профессиональных инженеров. PDH Engineering.

    "Мне нравится широта ваших курсов HVAC; не только экология или экономия энергии

    курсов. "

    Рассел Бейли, П.Е.

    Нью-Йорк

    "Это укрепило мои текущие знания и дополнительно научило меня нескольким новым вещам

    , чтобы выставить меня на новые источники

    информации."

    Стивен Дедук, П.Е.

    Нью-Джерси

    "Материал был очень информативным и организованным. Я многому научился, и они были

    очень быстро отвечают на вопросы.

    Это было на высшем уровне. Будет использовать

    снова. Спасибо. "

    Блэр Хейворд, П.Е.

    Альберта, Канада

    "Простой в использовании сайт.Хорошо организовано. Я действительно буду использовать ваши услуги снова.

    Я передам вашу компанию

    имя другим на работе. "

    Рой Пфлайдерер, П.Е.

    Нью-Йорк

    "Справочный материал был превосходным, и курс был очень интересным, особенно, поскольку я думал, что я уже был знаком

    с подробной информацией о Канзасе

    Городская авария Хаятт."

    Майкл Морган, П.Е.

    Техас

    "Мне очень нравится ваша бизнес-модель. Мне нравится возможность просматривать текст перед покупкой. Я нашел класс

    информативно и полезно

    в моей работе. "

    Уильям Сенкевич, П.Е.

    Флорида

    "У вас есть большой выбор курсов, и статьи очень информативны.Вы

    - лучшее, что я нашел ".

    Рассел Смит, П.Е.

    Пенсильвания

    "Я считаю, что такой подход позволяет работающему инженеру легко заработать PDH, предоставив время для обзора

    материал. "

    Jesus Sierra, P.E.

    Калифорния

    "Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле,

    человек учится больше

    от сбоев. "

    John Scondras, P.E.

    Пенсильвания

    "Курс был хорошо составлен, и использование конкретных примеров эффективно

    способ обучения. "

    Джек Лундберг, П.Е.

    Висконсин

    "Я очень впечатлен тем, как вы представляете курсы; i.э., разрешив

    студент пересмотреть курс

    материал до оплаты и

    получает викторину. "

    Арвин Свангер, П.Е.

    Вирджиния

    "Спасибо за предложение всех этих замечательных курсов. Я, конечно, выучил и

    очень понравилось. "

    Мехди Рахими, П.Е.

    Нью-Йорк

    "Я очень рад предложениям курса, качеству материала и простоте поиска и

    принимает ваш он-лайн

    курсов."

    Уильям Валериоти, П.Е.

    Техас

    "Этот материал в значительной степени оправдал мои ожидания. Курс был прост в использовании. Фотографии в основном обеспечивали хорошее визуальное отображение

    обсуждаемых тем. "

    Майкл Райан, П.Е.

    Пенсильвания

    "Именно то, что я искал. Нужен 1 кредит по этике и нашел его здесь."

    Gerald Notte, P.E.

    Нью-Джерси

    "Это был мой первый онлайн-опыт получения необходимых кредитов PDH. Это было

    информативно, выгодно и экономично.

    Я очень рекомендую его

    для всех инженеров. "

    Джеймс Шурелл, П.Е.

    Огайо

    "Я ценю вопросы" реального мира "и имеют отношение к моей практике, и

    не основано на некоторых неясных раздел

    законов, которые не применяются

    - "нормальная" практика."

    Марк Каноник, П.Е.

    Нью-Йорк

    "Большой опыт! Я многому научился возвращаться к своему медицинскому устройству.

    организации. "

    Иван Харлан, П.Е.

    Теннесси

    «Материал курса имел хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

    Евгений Бойл, П.E.

    Калифорния

    "Это был очень приятный опыт. Тема была интересной и хорошо представленной,

    и онлайн формат был очень

    доступны и легко

    использовать. Большое спасибо. "

    Патриция Адамс, П.Е.

    Канзас

    "Отличный способ достичь соответствия требованиям PE Continuation Education в течение срока действия лицензии."

    Джозеф Фриссора, П.Е.

    Нью-Джерси

    "Должен признаться, я действительно многому научился. Это помогает провести печатную викторину в течение

    Обзор текстового материала. Я

    также оценили просмотр

    фактических случаев. "

    Жаклин Брукс, П.Е.

    Флорида

    "Документ Общие ошибки ADA при проектировании объектов очень полезен.

    Тест

    требовал исследования в

    документ , но ответы были

    легко доступны. "

    Гарольд Катлер, П.Е.

    Массачусетс

    "Это было эффективное использование моего времени. Спасибо за то, что у вас есть выбор

    в транспортной инженерии, которая мне нужна

    для выполнения требований

    PTOE сертификация."

    Джозеф Гилрой, П.Е.

    Иллинойс

    «Очень удобный и доступный способ заработать CEU для моих требований Delaware PG».

    Ричард Роудс, П.Е.

    Мэриленд

    "Многому научился с защитным заземлением. До сих пор все курсы, которые я выбрал, были великолепны.

    Надеюсь увидеть больше 40%

    дисконтных курсов."

    Кристина Николас, П.Е.

    Нью-Йорк

    "Только что закончили экзамен по радиологическим стандартам и с нетерпением ждем дополнительных

    курсов. Процесс прост и

    намного эффективнее, чем

    приходится путешествовать. "

    Деннис Мейер, П.Е.

    Айдахо

    "Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

    Инженеры, чтобы получить единицы PDH

    в любое время.Очень удобно. "

    Пол Абелла, П.Е.

    Аризона

    "Пока это было здорово! Будучи полной матерью двоих детей, у меня не так много

    время для исследования, где

    получить мои кредиты от. "

    Кристен Фаррелл, П.Е.

    Висконсин

    "Это было очень познавательно и познавательно.Легко , чтобы понять с иллюстрациями

    и графики; определенно делает это

    легче поглотить все

    теории. "

    Виктор Окампо, P.Eng.

    Альберта, Канада

    "Хороший обзор принципов полупроводника. Мне понравилось проходить курс в

    мой собственный темп во время моего утра

    метро добираться

    на работу."

    Clifford Greenblatt, P.E.

    Мэриленд

    "Просто найти интересные курсы, скачать документы и взять

    викторина. Я бы высоко рекомендую

    Вы на любой ЧП, нуждающихся в

    единиц CE. "

    Марк Хардкасл, П.Е.

    Миссури

    "Очень хороший выбор тем в многочисленных областях техники."

    Рэндалл Дрейлинг, П.Е.

    Миссури

    "Я заново узнал вещи, которые я забыл. Я также рад получить финансово

    от ваш промо-мейл который

    сниженная цена

    на 40%. "

    Конрадо Казем, П.E.

    Теннесси

    "Отличный курс по разумной цене. Я буду использовать ваш сервис в будущем."

    Charles Fleischer, P.E.

    Нью-Йорк

    "Это был хороший тест, и я действительно проверил, что я прочитал профессиональную этику

    коды и Нью-Мексико

    постановления. "

    Брун Гильберт, П.E.

    Калифорния

    «Мне очень понравились занятия. Они стоили времени и усилий».

    Дэвид Рейнольдс, П.Е.

    Канзас

    "Очень доволен качеством тестовых документов. Будет использовать CEDengineerng

    при необходимости дополнительного

    сертификация. "

    Томас Каппеллин, П.E.

    Иллинойс

    "У меня истек срок действия курса, но вы все равно выполнили обязательство и дали

    мне, что я заплатил - много

    приветствуется! "

    Джефф Хэнслик, П.Е.

    Оклахома

    "CEDengineering предлагает удобные, экономичные и актуальные курсы

    для инженера. "

    Mike Seidl, P.E.

    Небраска

    ,

    HVAC Расчеты

    Расчеты по размеру системы HVAC В Macalister зал будет завершен двумя способами. Первый метод будет основываться на оценках CFM и тоннажа, изложенных в ASHRAE. Второй метод, что более подробно, включает в себя использование программы моделирования Carrier E-20 рассчитать нагрузки.

    ASHRAE Стандарты оценки:

    ASHRAE устанавливает стандарты для оценка cfm и тоннажа в здании.Используя 20 кубических метров на человека стандартная и система подогрева, ASHRAE излагает числа следующим образом:

    Расчетная охлаждающая нагрузка (Тонны): .25 до .35 тонн на 100 квадратных футов общей площади застройки

    Расчетная нагревательная нагрузка

    (MBH): от 1,5 до 2,5 MBH на 100 квадратных футов общей площади здания

    Расчетный CFM: от 75 до 125 кубических футов в минуту на 100 квадратных футов общей площади здания

    охлажденной воды GPM: 2.4 галлона в минуту на тонну охлаждение

    GPM с горячей водой: нагрев MBH, деленный на 10

    Для наших оценок мы будем использовать средние точки этих значений приводят к ответу, который не является ни слишком либеральным, ни слишком консервативный.

    ASHRAE Метод оценки для Macalister Зал:

    Общая площадь кондиционированного пространство в Макалистер Зал выглядит следующим образом:

    28 400 футов 2 в подвале

    24 400 футов 2 в первом этаж

    13 500 футов 2 на каждой башне этаж

    10500 футов 2 на факультете клуб

    Общая кондиционированная площадь: 117 300 футов 2

    На основе рассчитанных квадратных футажей выше и стандарты ASHRAE, изложенные ранее, строительные нагрузки Рассчитано в следующей таблице:

    Охлаждающая нагрузка

    Тепловая нагрузка

    Всего CFM

    Охлажденная вода

    Горячая вода

    350 тонн

    2350 МБ / ч

    117300 куб.м.

    840 галлонов в минуту

    235 галлонов в минуту

    Carrier E-20 Программа

    Программа Carrier E-20 гораздо точнее, чем ранее упомянутая предварительный расчет.С помощью этой программы рассчитываются строительные нагрузки с учетом строительных материалов, направленной облицовки, инфильтрация, графики занятости, нагрузки на оборудование, нагрузки на людей и др. уставки в системе HVAC. Ввод данных в программу изложен ниже.

    Филадельфийский Регион Температура

    Сезон

    Сухая колба (F)

    Мокрая колба (F)

    Дневной диапазон (F)

    Зима

    10

    N / A

    N / A

    Лето

    93

    75

    14

    Филадельфийских возвышений над уровнем моря: 26 футов

    Филадельфия Локатор Местоположение: 40

    Информация о строительных материалах:

    В следующих разделах показаны две основные формы построения Macalister Холл.Башня состоит из 6 "сборной железобетонной панели снаружи, большое воздушное пространство, и внутренняя часть 4 "бетонного блока. Первый пол имеет 4 "кирпич снаружи, 1" воздушный зазор и 8 "бетон перегородка

    Стена 1-го этажа Секция Башня Стена Секция

    Из приведенных выше секций стен я вычислил общее значение U стен (Btu / hr / ft 2 / F) на основе используемых материалов и установленных стандартов далее в ASHRAE.Табличные значения следующие:

    1-й этаж Строительство:

    Строительные материалы

    R-значение (час x фут 2 x F / Btu)

    U-значение (БТЕ / час / фут 2 / F)

    Сопротивление наружного воздуха

    0.33

    3,03

    4 "Лицевой Кирпич

    0,43

    2,33

    1 "Air Gap

    0,91

    1,10

    8 "CMU

    2.02

    0,50

    Внутреннее сопротивление воздуха

    0,69

    1,45

    Итого

    4,38

    8,41

    Строительство башни:

    Строительные материалы

    R-значение (час x фут 2 x F / Btu)

    U-значение (БТЕ / час / фут 2 / F)

    Сопротивление наружного воздуха

    0.33

    3,03

    6 "Сборная железобетонная панель

    3,22

    0,31

    6 "Air Gap

    0,91

    1,10

    4 "CMU

    1.11

    0,90

    Внутреннее сопротивление воздуха

    0,69

    1,45

    Итого

    6,26

    6,79

    Типичная оконная конструкция:

    Принято алюминиевое окно с двойным остеклением с терморазрывом и светлыми оттенками на внутренней.Эти предположения приводят к следующим значениям:

    Общее значение U: .537 (БТЕ / час / фут 2 / F)
    Коэффициент затенения: .454

    Типичная конструкция крыши:

    Предполагается сборная крыша на 22-метровой стальной палубе с утеплителем R-7. Эти предположения приводят к следующему значению:

    Общее значение U:.121 (БТЕ / час / фут 2 / F)

    Типичные нагрузки освещения: 1,5 Вт / фут 2

    Типичные люди Нагрузки: 1 человек / 150 футов 2 выполняющих работу в офисе:

    ощутимая нагрузка: 245 btuh
    Скрытая нагрузка: 205 btuh

    Типичные потери проникновения: 2 смены воздуха / час

    Типовое оборудование Нагрузки: .5 Вт / фут 2

    Уставки и факторы безопасности:

    Уравнения , используемые E-20 для расчета нагрузок:

    1. Нагревательная нагрузка: Q = U x A x T

    Где:

    Q = скорость теплопередачи, БТЕ / час
    U = общий коэффициент теплопередачи, БТЕ / час / фут 2 / F
    A = Площадь поверхности, через которую проходит тепло, футы 2
    T = Разница температур, через которую проходит тепло, F

    Площадь стены была рассчитана с использованием высоты пола до пола 12'-0 " в башне и 15'-0 "на первом этаже.

    2. Охлаждающая нагрузка: Q = U x A x CLTD c

    Где:

    Q = охлаждающая нагрузка на крышу, стекло или стену, БТЕ / час
    U = общий коэффициент теплопередачи для крыши, стекла или стены, БТЕ / час / фут 2 / F
    A = Площадь крыши, стекла или стены, футы 2
    CLTD c = Скорректированная разница температур охлаждающей нагрузки, F

    CLTD c - это измененное значение для разности температур, которая учитывает накопление тепла и влияние временных задержек.

    3. Солнечное излучение через стекло: Q = SHGF x A x SC x CLF

    Где:

    SHGF основывается на ориентации и времени года, а SC - на вид драпировки, размещенной на окне.

    4. Нагрузка на освещение: Q = 3,4 x Ш x BF x CLF

    Где:

    BF учитывает потери тепла в балластах люминесцентных ламп и CLF учитывает накопление тепла в осветительных приборах.

    5. Нагрузки от людей: Q с = q с х н х CLF, Q л = q л x n

    Где:

    Q с и Q л = ощутимый и скрытый прирост тепла, БТЕ / час
    q с & q л = ощутимый и скрытый прирост тепла в человек, БТЕ / час человек
    n = количество человек
    CLF = Коэффициент охлаждающей нагрузки для людей

    Carrier E-20 Результаты:

    Из приведенных выше уставок и уравнений информация была введена в Была получена программа Carrier E-20 и получены следующие результаты:

    Охлаждающая нагрузка

    Тепловая нагрузка

    Всего CFM

    Охлажденная вода

    Горячая вода

    300 тонн

    2100 МБ / ч

    куб.м.

    720 галлонов в минуту

    210 галлонов в минуту

    ,
    Испарение с водной поверхности

    Испарение воды с водной поверхности - например, открытого резервуара, бассейна или аналогичного - зависит от температуры воды, температуры воздуха, влажности и скорости воздуха над поверхностью воды.

    Water surface evaporation - swimming pool heat loss

    Количество выпаренной воды может быть выражено как:

    г с = Θ А (х с - х) / 3600 (1)

    или

    г ч = Θ А (х с - х)

    где

    г с = количество выпаренной воды в секунду (кг / с)

    г ч = количество выпаренной воды в час (кг / час)

    Θ = ( 25 + 19 v ) = коэффициент испарения (кг / м 2 ч)

    v = скорость воздуха над поверхностью воды (м / с)

    A = площадь поверхности воды (м 2 )

    x с = максимальная влажность отношение насыщенного воздуха при той же температуре, что и у поверхности воды (кг / кг) (кг H 2 O в кг сухого воздуха)

    x = коэффициент влажности воздуха (кг / кг) (кг H 2 O в кг сухого воздуха)

    Примечание! Единицы для Θ не совпадают, так как это эмпирическое уравнение - результат опыта и экспериментов.

    Требуемое теплоснабжение

    Большая часть тепла или энергии, необходимой для испарения, берется из самой воды. Для поддержания температуры воды - тепло должно быть подведено к воде.

    Требуемое тепло для покрытия испарения можно рассчитать как

    q = h we г s (2)

    , где

    q = подводимое тепло (кДж / с ( кВт))

    ч we = теплота испарения воды (кДж / кг)

    Пример - испаренная вода из бассейна

    В бассейне 50 м х 20 м с температурой воды 20 o С. Максимальный коэффициент влажности насыщения в воздухе над поверхностью воды составляет 0,014659 кг / кг. При температуре воздуха 25 o C и 50% относительная влажность отношение влажности воздуха составляет 0,0098 кг / кг - см. Диаграмму Молье.

    При скорости воздуха над поверхностью воды 0,5 м / с коэффициент испарения можно рассчитать как

    Θ = (25 + 19 (0,5 м / с))

    = 34.5 кг / м 2 ч

    Площадь бассейна можно рассчитать как

    A = (50 м) (20 м)

    = 1000 м 2

    Испарение из поверхность может быть рассчитана как

    г с = (34,5 кг / м 2 ч ) (1000 м 2 ) ((0,014659 кг / кг) - (0,0098 кг / кг) ) / 3600

    = 0,047 кг / с

    Теплота испарения (энтальпия) воды при температуре 20 o С составляет 2454 кДж / кг .Теплоснабжение, необходимое для поддержания температуры воды в бассейне, можно рассчитать как

    q = (2454 кДж / кг) (0,047 кг / с)

    = 115,3 кВт

    Потери энергии и необходимое количество теплоснабжения могут быть уменьшены на

    • , уменьшая скорость воздуха над поверхностью воды - ограниченный эффект
    • , уменьшая размер бассейна - не очень практично
    • снижение температуры воды - не решение для комфорта
    • снижение температуры воздуха - не решение для комфорта
    • увеличение содержания влаги в воздухе - может увеличить конденсацию и повреждение строительных конструкций для внутренних бассейнов
    • удалить влажную поверхность - возможно с помощью пластиковых одеял на поверхности воды снаружи время операции.Очень эффективный и часто используемый

    Примечание! - во время работы активность в плавательном бассейне может значительно увеличить испарение воды и необходимое количество тепла.

    Чтобы снизить потребление энергии и избежать повреждения влаги в строительных конструкциях, обычно используются устройства для рециркуляции тепла с тепловыми насосами, передающими скрытую теплоту из воздуха в воду в бассейне.

    Калькулятор испарения с поверхности воды

    .
    Расчет водяных теплых полов по площади: Расчет теплого пола водяного самостоятельно

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *