Одноваттные светодиоды подбор резистора: Как рассчитать ограничивающий резистор для светодиода? | Статьи

Содержание

Расчет резистора для светодиода и различные подключения LEDs

Подключать светодиоды — дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.

Сегодня рассмотрим как правильно рассчитать резистор для светодиода и подключить его, чтобы он горел долго и на радость потребителю. Самые дешевые и качественные резисторы поштучно и наборами можно купить тут с бесплатной доставкой.

Главный параметр у любого светодиода — ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.

Ток на светодиодах ограничивается резистором — это самый дешевый вариант. Но есть и более «продвинутый» — использовать светодиодный драйвер. По факту, использование резисторов — пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно приобрести тут. Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.

Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.

Существует несколько типов подключения светодиодов:

Расчет резистора для светодиода


Недавно мы открыли новую рубрику «калькуляторы», где Вы можете быстро и самостоятельно рассчитать резистор для одного светодиода с помощью онлайн-калькулятора, если не желаете читать дальше много букв.

Вспомним закон Ома:

U=I*R

R=U/I где,

R — сопротивление — измеряется в Омах

U — напряжение-  измеряется в вольтах (В)

I — ток- измеряется в амперах (А)

Пример расчета резистора для светодиода:

Допустим, источник питания выдает 12 В: Vs=12 В

Светодиод — 2 В и 20 мА

Чтобы рассчитать резистор нам необходимо преобразовать миллиамперы в амперы:

20 мА=0,02 А.

R=10/0.02=500 Ом

На сопротивление рассеивается 10 В (12-2)

Посчитаем мощность сопротивления:

P=U*I

P=10*0.02 A=0.2 Вт

Необходимый резистор — R=500 Ом и Р=0,2 Вт

Проверим данную теорию на калькуляторе:

Расчет резистора для светодиода при последовательном соединение светодиодов


Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При таком соединении падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В

Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях. Однако, можно рассчитать резистор при последовательном соединении светодиодов и в автоматическом режиме на нашем новом калькуляторе.

Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если «на пальцах», то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.

R=6/0.02=300 Ом.

Р=6*0,02=0,12Вт

Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.

Характеристики светодиода и источника питания аналогичные предыдущему примеру.

Расчет резистора для светодиода при параллельном соединении


При таком соединении плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.

Расчет резистора для светодиода в этом случае аналогичен первому случаю.

Расчет резистора для светодиода при последовательно-параллельное соединении


Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным. Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А. Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.

Расчет резистора для светодиода в этом случае будет таким:

Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).

При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.

Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.

В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».

Калькулятор токоограничительного резистора для одноцветного светодиода

Светодиоды видимого спектра Резисторы

История развития светодиодов длится уже 100 лет… В начале XX века описывалось явление излучения света из материалов при воздействии электрических полей и эффект был назван «фотолюминесценция». Cовершенно случайно британский радиоинженер, капитан Генри Джозеф Раунд открыл прообраз современного светодиода. Раунд рассказал об этом интересном эффекте в 1907 г. в своей заметке, где описал только сам эффект желтого свечения от двухполярной структуры. В 1923 г. советский ученый Олег Владимирович Лосев, детально изучил детектор на основе карбида-кремния и смог сфотографировать свечение, испускаемое детектором, содержащим случайно созданный p-n переход.

Прогресс в исследованиях и производстве СИД последовал в 60-70х гг. прошлого века с развитием новых материалов для светодиодов красного, желтого, оранжевого и зеленого цветов свечения. В 1960 г. были созданы первые СИД(свето-излучающие диоды) и лазеры ближнего ИК-диапазона на основе GaAs. Параллельно с этим появились фотоприемники на основе полупроводников. Первый синеватозеленый СИД со структурой металл-диэлектрик-полупроводник (МДП) создал Жак Панков (Яков Исаевич Панченков) с соавторами в 1971 г. Эти СИД изготовляли путем эпитаксиального осаждения нитрида галлия, обладающего электронной проводимостью, на сапфировую подложку, после наносили изолирующий слой из нитрида галлия с примесью цинка.

Современные светодиоды выпускаются в очень широком диапазоне цветов в том числе ИК и УФ диапазонов. Могут быть как одноцветными, так и многоцветными (когда в одном корпусе сосредоточено несколько кристаллов разных цветов), — например, RGB. Светодиоды характеризуются электрическими и световыми параметрами. Электрические характеристики: прямой ток, прямое падение напряжения, максимальное обратное напряжение, максимальная рассеиваемая мощность, вольт-амперная характеристика. Световые параметры: световой поток, сила света, угол рассеяния, цвет (или длина волны), цветовая температура, световая отдача.

Типы светодиодов

Технические характеристики

Прямой номинальный ток — рабочий ток, при котором светодиод будет нормально работать и p-n-переход не будет пробит и не перегреется.Величина номинального прямого тока зависит от размера кристалла, типа полупроводника, цвета свечения.

Прямое напряжение — падение напряжения на p-n-переходе светодиода при рабочем токе.По значению напряжения можно определить химический состав полупроводника.

Например:

  • красные (галлия фосфид) — от 1,63 до 2,03 В
  • оранжевые (галлия фосфид) — от 2,03 до 2,1 В;
  • желтые (галлия фосфид) — от 2,1 до 2,18 В;
  • зеленый (галлия фосфид) — от 1,9 до 4 В;
  • синий (селенид цинка) — от 2,48 до 3,7 В;
  • фиолетовый (индия-галлия нитрид) — от 2,76 до 4 В.

Максимальное обратное напряжение светодиода — это напряжение обратной полярности, при котором происходит пробой кристалла и светодиод выходит из строя.

Максимальная мощность рассеяния — мощность, которую корпус светодиода способен рассеивать в рабочем режиме.

Сила света количественно отражает интенсивность светового потока в определенном направлении и указывается в милликанделах.Чем меньше угол рассеяния — тем больше будет сила света светодиода.

Под световым потоком в один люмен понимают световой поток, испускаемый точечным изотропным источником с силой света, равной одной канделе, в телесный угол в один стерадиан.

Длина волны измеряется в нанометрах и характеризует цвет излучаемого светодиодом света. Зависит от химического состава полупроводникового кристалла, например:

Например:

  • красные — от 610 нм до 760 нм;
  • оранжевые — от 590 до 610 нм;
  • желтые — от 570 до 590 нм;
  • зеленый — от 500 до 570 нм;
  • синий — от 450 до 500 нм;
  • фиолетовый — от 400 до 450 нм.

Угол рассеяния светодиода измеряется в градусах.

Формула расчета токоограничительного резистора для светодиода

Для ограничения прямого тока через светодиод в цепь включают резистор. Требуемое значение находят из соотношения:

R = 

Uпит – UF

 

I

где, UFпрямое напряжение на светодиоде,

Uпитпитающее напряжение,

I – ток через светодиод

Для расчета введите необходимые технические параметры или введите НОМЕНКЛАТУРНЫЙ НОМЕР светодиода с нашего сайта.

Светодиод с нужными параметрами можно подобрать в разделе «Светодиоды видимого спектра»

Номенклатурный
номер

Где взять номенклатурный номер

Внимание! 

Для перехода в другой калькулятор используйте ссылку:

Как определить «полярность» светодиода

Расчетное значение:

R  =   Ом

Поиск резистора на сайте:

Внимание! Производители объединяют резисторы в серии или ряды: E6, E12, E24…
Для подбора компонента будет использована серия E24.

Найти на сайте

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом.

Соблюдайте технику безопасности во время работы с электронными компонентами!

Основы: выбор резисторов для светодиодов

Итак… вы просто хотите зажечь светодиод. Какой резистор следует использовать?

Может быть, вы знаете ответ, а может быть, все уже предполагают, что вы должны знать, как добраться до ответа. И в любом случае, это вопрос, который, как правило, порождает больше вопросов, прежде чем вы действительно сможете получить ответ: какой тип светодиода вы используете? Какой блок питания? Батарея? Плагин? Часть большей схемы? Ряд? Параллельно?

Игра со светодиодами должна быть забавной, и поиск ответов на эти вопросы на самом деле является частью забавы. Есть простая формула, которую вы используете для выяснения этого, закон Ома. Эта формула В = I × R , где В — напряжение, I — ток, а R — сопротивление.

Но как узнать, какие числа нужно подставить в эту формулу, чтобы получить правильное значение резистора?

Чтобы получить В в нашей формуле, нам нужно знать две вещи: напряжение нашего источника питания и напряжение наших светодиодов.

Давайте начнем с конкретного примера. Предположим, что мы используем держатель для батарей 2 × AA (как этот из нашего магазина), который обеспечит нас питанием 3 В (с двумя последовательно соединенными элементами AA по 1,5 В; мы суммируем напряжения), и мы будем планирую подключить желтый светодиод (как один из этих).

Светодиоды имеют характеристику, называемую «прямое напряжение», которая часто указывается в спецификациях как Vf. Это прямое напряжение представляет собой величину напряжения, «теряемого» в светодиоде при работе с определенным эталонным током, обычно определяемым как около 20 миллиампер (мА), т. е. 0,020 ампер (А). Vf зависит в первую очередь от цвета светодиода, но на самом деле немного варьируется от светодиода к светодиоду, иногда даже в пределах одного комплекта светодиодов.

Стандартные красные, оранжевые, желтые и желто-зеленые светодиоды имеют Vf около 1,8 В, а чисто зеленые, синие, белые и УФ-светодиоды имеют Vf около 3,3 В. Таким образом, падение напряжения на нашем желтом светодиоде будет около 1,8 В.

В в нашей формуле находится путем вычитания прямого напряжения светодиода из напряжения источника питания.

3 В (источник питания) – 1,8 В (падение напряжения на светодиоде) = 1,2 В

В этом случае у нас осталось 1,2 В, которые мы подключим к нашему В = I  ×  R формула.

Следующее, что нам нужно знать, это I , то есть ток, на который мы хотим управлять светодиодом. Светодиоды имеют максимальный номинальный непрерывный ток (в спецификациях часто указывается как If или Imax). Часто это около 25 или 30 мА. На самом деле это означает, что типичное значение тока, к которому нужно стремиться со стандартным светодиодом, составляет от 20 мА до 25 мА, что немного меньше максимального тока.

В стороне: Вы всегда можете дать светодиоду меньше тока . Работа светодиода с номинальным максимальным током обеспечивает максимальную яркость за счет рассеивания мощности (тепла) и срока службы батареи (конечно, если вы разряжаете батареи). Если вы хотите, чтобы ваши батареи работали в десять раз дольше, обычно вы можете просто выбрать ток, который составляет всего одну десятую от номинального максимального тока.

Итак, 25 мА — это «желаемый» ток — то, что мы надеемся получить, выбирая резистор, а также I , которые мы вставим в нашу формулу V  =  I  × R  .

1,2 В = 25 мА × R

или перефразируя:

1,2 В / 25 мА = R

и когда мы решим это, мы получим:

90 002 1,2 В / 25 мА = 1,2 В / 0,025 А = 48 Ом

Где «48 Ом» означает 48 Ом. (Единицы таковы, что 1 В/1 А = 1 Ом; один вольт, деленный на один ампер, равен одному ому. Если вы имеете дело с током в мА, преобразуйте его в А, разделив на 1000. )

Наша версия формулы теперь выглядит так:

(напряжение источника питания — напряжение светодиода) / ток (в амперах) = требуемое значение резистора (в омах)

В итоге мы получаем значение резистора 48 Ом. И это хорошее значение пускового резистора для использования с желтым светодиодом и источником 3 В.

Давайте на мгновение посмотрим на значения резисторов. Резисторы обычно доступны с такими номиналами, как 10 Ом, 12 Ом, 15 Ом, 18 Ом, 22 Ом, 27 Ом, 33 Ом, 39 Ом, 47 Ом, 51 Ом, 56 Ом, 68 Ом, 75 Ом и 82 Ом. (и их кратные, 510 Ом, 5,1 кОм, 51 кОм и т. д.) и (если вы не укажете более высокую точность при покупке) имеют значение допуска около ±5%.

Если вы много работаете над электроникой, у вас наверняка завалялась куча резисторов. Если вы только начинаете, возможно, вы захотите приобрести ассортимент, чтобы у вас было что-то под рукой. Резисторы также рассчитаны на различную мощность — резисторы, рассчитанные на большую мощность (больше ватт), способны безопасно рассеивать больше тепла, выделяемого в резисторе. Резисторы мощностью 1/4 Вт, вероятно, являются наиболее распространенными и, как правило, подходят для простых светодиодных схем, подобных тем, которые мы здесь рассматриваем. (Ранее мы уже обсуждали рассеивание мощности — учтите это, когда начнете выходить за рамки этих основ.)

Значение резистора, которое мы рассчитали выше, составляет 48 Ом, что не является одним из наших распространенных значений. Но это нормально, потому что мы будем использовать резистор с допуском ±5%, так что в любом случае это не обязательно будет точно такое значение. Чтобы быть в безопасности, мы обычно выбираем следующее большее значение, которое у нас есть; 51 Ом в этом примере.

Давайте подключим это:
Батарейный отсек 3 В, резистор 51 Ом и желтый светодиод.

Итак, это хорошая маленькая светодиодная схема, но как мы можем сделать это с большим количеством светодиодов? Можем ли мы просто добавить еще один резистор и еще один светодиод? Ну да, в точку. Каждому светодиоду потребуется 25 мА, поэтому нам нужно выяснить, какой ток могут обеспечить наши батареи.

В стороне : Небольшие поиски позволяют найти полезный технический справочник (pdf) по щелочным батареям от Energizer. Получается, что чем сильнее вы их гоните, тем быстрее вы их истощаете. Часть этого очевидна: если вы непрерывно потребляете 1000 мА из батареи, вы ожидаете, что батарея прослужит 1/10 времени, если вы потребляете 100 мА. Но на самом деле есть второй эффект, заключающийся в том, что общая выходная энергия батареи (измеряемая в ватт-часах) уменьшается, когда вы приближаетесь к пределу тока, который может вырабатывать батарея. На практике с щелочными батареями AA, если вы разряжаете их при 1000 мА, они прослужат всего около 1/20 от того, что было бы, если бы вы разряжали их при 100 мА.

 Для нашего одиночного светодиода на 25 мА элементы AA прослужат чертовски долго. Если мы запустим четыре светодиода параллельно, требуя 100 мА, мы все равно получим довольно приличное время автономной работы. Для более чем 500 мА мы должны подумать о подключении к стене. Таким образом, мы можем добавить несколько наших желтых светодиодов, каждый со своим собственным резистором 51 Ом, и с удовольствием управлять ими с помощью держателя батарей 2xAA.

Хорошо, как насчет 9-вольтовой батарейки? Давайте придерживаться наших желтых светодиодов. Если мы хотим запустить один светодиод из 9V батареи, это означает, что мы должны получить колоссальные 7,2 В с нашим резистором, который должен быть 288 Ом (или ближайшее удобное значение: 330 Ом, в моей мастерской).

9 В (питание) – 1,8 В (желтый светодиод) = 7,2 В

7,2 В / 25 мА = 288 Ом (округлить до 330 Ом)

Использование резистора при падении напряжения любой величины рассеивает эту энергию в виде тепла. Это означает, что мы просто тратим эту энергию на тепло вместо того, чтобы получать больше света от нашей светодиодной схемы. Так можем ли мы использовать несколько светодиодов, соединенных вместе? Да! Давайте соединим четыре светодиода на 1,8 В последовательно, что в сумме даст 7,2 В. Когда мы вычтем это из нашего напряжения питания 9V, у нас остается 1,8 В, требующий только резистора 72 Ом (или ближайшее значение: 75 Ом).

9 В – (1,8 В × 4) = 9 В – 7,2 В = 1,8 В

1,8 В / 25 мА = 72 Ом (и затем округляем до 75 Ом) Последовательное подключение светодиодов:

[Напряжение источника питания — (напряжение светодиода × количество светодиодов)] / ток = номинал резистора

Мы даже можем соединить пару этих цепочек из четырех светодиодов плюс резистор параллельно, чтобы получить больше светоотдачи. , но чем больше мы добавим, тем больше мы сократим срок службы батареи.

Но можем ли мы сделать пять последовательно с батареей 9 В? Ну, возможно. Цифра 1,8 В, которую мы использовали, является всего лишь «типичным эмпирическим правилом». Если вы уверены, что прямое напряжение равно 1,8 В, оно будет работать. Но что, если это не совсем так? Если прямое напряжение ниже, вы можете перегрузить их при более высоком токе, что может сократить срок их службы (или полностью убить). Если прямое напряжение выше, светодиоды могут быть тусклыми или даже не гореть. В некоторых случаях вы можете управлять светодиодами последовательно без резистора, как в нашей схеме светодиодного обеденного стола, но в большинстве случаев предпочтительнее и безопаснее использовать резистор.

Давайте сделаем еще один пример, на этот раз с белым светодиодом (вы можете найти некоторые из них здесь) и батарейным блоком 3xAA (таким как этот). Наше напряжение источника питания составляет 4,5 В, а Vf нашего светодиода — 3,3 В. Мы по-прежнему будем стремиться к току 25 мА.

4,5 В – 3,3 В = 1,2 В

1,2 В / 25 мА = 48 Ом (округлить до 51 Ом)

Итак, вот примеры, которые мы рассмотрели, плюс еще несколько с некоторыми другими распространенными типами источников питания. :

Напряжение питания Светодиод Цвет Светодиод Vf Светодиоды серии Требуемый ток Резистор (расчетный) Резистор (круглый)
3 В Красный, желтый или желто-зеленый 1,8 1 25 мА 48 Ом 51 Ом
4,5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 36 Ом 39 Ом
4,5 В Синий, зеленый, белый или ультрафиолетовый 3,3 1 25 мА 48 Ом 51 Ом
5 В Синий, зеленый, белый или ультрафиолетовый 3,3 1 25 мА 68 Ом 68 Ом
5 В Красный, желтый или желто-зеленый 1,8 1 25 мА 128 Ом 150 Ом
5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 56 Ом 56 Ом
9 В Красный, желтый или желто-зеленый 1,8 4 25 мА 72 Ом 75 Ом
9 В Синий, зеленый, белый или ультрафиолетовый 3,3 2 25 мА 96 Ом 100 Ом

Все эти значения основаны на тех же предположениях о прямом напряжении и требуемом токе, которые мы использовали в ранних примерах. Вы можете проработать их и проверить математику или просто использовать ее как удобную таблицу, если считаете, что наши предположения разумны. 😉

В какой-то момент кто-то, возможно, сказал вам: «Просто воспользуйтесь онлайн-калькулятором резисторов для светодиодов». И действительно, такие вещи есть — даже у нас есть (ну, бумажная версия для печати) — так зачем со всем этим работать? Во-первых, гораздо лучше понять, что и почему этот калькулятор делает то, что он делает. Но также почти невозможно использовать эти калькуляторы, если вы не знаете, какие переменные вам нужно будет ввести. Надеюсь, теперь вы сможете определить значения, которые вам понадобятся (напряжение источника питания, напряжение и ток светодиода), чтобы использовать светодиодный калькулятор. Но что более важно, (1) он вам на самом деле не нужен: вы можете сделать это самостоятельно и (2) если вы его используете, вы можете подвергнуть сомнению лежащие в его основе предположения, которые он может сделать от вашего имени.

Надеюсь, вы также видели, что существует гораздо больше, чем просто один способ зажечь светодиод. И мы даже не дошли до таких вещей, как объединение светодиодов разной мощности в цепи! Теперь вы можете вернуться к наклеиванию светодиодов на батарейки CR2032, чтобы сделать светодиодные броски? Да, вы определенно можете. Но вы можете вернуться назад и прочитать о том, когда вы должны добавить резистор даже в эту маленькую схему!

Напоследок отметим, что в этой статье речь шла о вашем базовом сквозном маломощном (хотя, возможно, очень ярком) светодиоде. Специализированные типы, такие как светодиоды высокой мощности, могут иметь несколько иные характеристики и требования.

Обновление : исправлен список общих значений резисторов, чтобы включить более распространенные значения.

Эта запись была размещена в Основы, Электроника, Проекты EMSL и отмечена как электроника, светодиоды, резисторы. Добавьте постоянную ссылку в закладки.

Как рассчитать номинал резистора для светодиодного освещения — специалисты по схемам

Как рассчитать номинал резистора для светодиодного освещения — специалисты по схемотехнике перейти к содержанию Делиться:

19 августа, 2012

Определить номинал резистора для светодиодов освещения просто и понятно, но мы должны учитывать цвет светодиода, а также номинальную мощность требуемого резистора и количество светодиодов в цепи. Мы надеемся, что чтение «Как рассчитать номинал резистора для светодиодного освещения» даст вам то, что вам нужно для вашего проекта.

Светодиоды становятся все более и более популярными для различных проектов и нужд освещения. Это связано с превосходной энергоэффективностью и увеличенным сроком службы светодиодов по сравнению с лампами накаливания. Кроме того, по мере совершенствования технологии и увеличения производства стоимость продолжает снижаться.

Выполните следующие действия, чтобы рассчитать номинал резистора для светодиодного освещения на 12 В постоянного тока:

  1. Определите напряжение и ток, необходимые для вашего светодиода.
  2. Мы будем использовать следующую формулу для определения номинала резистора: Резистор = (Напряжение батареи – напряжение светодиода) / требуемый ток светодиода.
  3. Для типичного белого светодиода, требующего 10 мА при питании от 12 В, значения составляют: (12-3,4)/0,010=860 Ом.
  4. Чтобы использовать несколько светодиодов параллельно, просуммируйте текущие значения. Из приведенного выше примера, если мы используем 5 белых светодиодов, потребляемый ток составляет 10 мА x 5 = 50 мА. Итак, (12-3,4)/0,050=172 Ом.

Расчет номинала резистора для светодиодного освещения

8x8x8 RGB LED Cube по GPL3+

LED — это аббревиатура от Light Emitting Diode. Это означает, что светодиод имеет определенную полярность, которая должна быть применена, чтобы он излучал свет. Несоблюдение этого требования полярности может привести к катастрофическому повреждению светодиода. Это связано с тем, что светодиод имеет относительно низкое допустимое значение напряжения обратной полярности (обычно около 5 вольт). Поскольку светодиод по сути является диодом, он имеет максимальное значение тока, которое не может быть превышено в течение любого периода времени.

Применение светодиодов

Имея это в виду, мы рассмотрим требования к ограничивающему резистору, который должен использоваться в цепи светодиодов. Поскольку светодиоды доступны в различных цветах, требуемое значение сопротивления будет варьироваться в зависимости от цвета светодиода. Это связано с тем, что цвет светодиода определяется материалами, из которых он изготовлен, и эти различные материалы имеют разные характеристики напряжения. Значение прямого напряжения — это напряжение, необходимое для того, чтобы светодиод загорелся. Типичные красные, зеленые, оранжевые и желтые светодиоды имеют прямое напряжение примерно 2,0 вольта; но белые и синие светодиоды имеют значение прямого напряжения 3,4 вольта. Из-за этого изменения значение сопротивления резистора будет варьироваться в зависимости от цвета светодиода.

Процедура заключается в выборе номинала резистора, который будет генерировать правильный ток, протекающий через светодиод, на основе этого значения прямого напряжения и значения источника питания, питающего цепь.

Так как автомобильные приложения являются одним из самых популярных применений светодиодов, я приведу пример проекта светодиодного освещения, в котором в качестве источника питания используется 12 вольт. Требуемая формула — это закон Ома, который гласит, что сопротивление равно напряжению, деленному на ток. Здесь важно отметить, что значение напряжения используется при расчете. Разница между напряжением источника питания (батареи) и значением прямого напряжения светодиода. Это потому, что мы хотим, чтобы резистор «понизил» напряжение от источника питания до значения прямого напряжения светодиода.

Формула:

Резистор = (Напряжение батареи – напряжение светодиода) / требуемый ток светодиода.

Итак, предположим 12-вольтовый источник питания и белый светодиод с нужным током 10 мА; Формула принимает вид Резистор = (12-3,4)/0,010, что составляет 860 Ом. Поскольку это не стандартное значение, я бы использовал резистор на 820 Ом. Нам также необходимо определить номинальную мощность (Вт) необходимого резистора. Это вычисляется путем умножения значения напряжения, падающего на резистор, на значение тока, протекающего в нем. Для нашего примера выше (12-3,4) X 0,010 = 0,086, поэтому мы можем безопасно использовать резистор мощностью ¼ Вт в этом приложении, поскольку мы должны использовать следующую по величине стандартную номинальную мощность.

Если требуется более одного светодиода, несколько светодиодов (одного цвета) можно подключить параллельно. Это сохранит то же требование к напряжению, но значение тока будет увеличиваться прямо пропорционально количеству светодиодов. Также может увеличиться номинальная мощность резистора. В качестве примера возьмем тот же белый светодиод, но подключим 5 светодиодов параллельно. Следовательно, требуемое значение тока будет равно 10 мА, умноженному на 5 (0,010 X 5 = 0,050). Используя это в нашей формуле ; (12-3,4)/0,050= 172 Ом. Используйте стандартное значение 180 Ом. Номинальная мощность теперь будет выше (12-3,4) X 0,050 = 0,43, поэтому в этом случае нам нужно использовать резистор не менее ½ Вт.

Заключение

Два примера будут повторены для красных светодиодов. Для одного красного светодиода: (12-2,0)/0,010 = 1000 Ом, что составляет 1 кОм, а номинальная мощность составляет (12-2,0) X (0,010) = 0,100, поэтому ¼ ватта достаточно. Для 5 красных светодиодов, включенных параллельно: (12-2,0)/0,05= 200 Ом, что является стандартным значением, а номинальная мощность составляет (12-2,0) X 0,050 = 0,5, поэтому я бы использовал резистор на 1 Вт, чтобы дать нам некоторый допуск для компенсации колебаний напряжения питания и т.

Одноваттные светодиоды подбор резистора: Как рассчитать ограничивающий резистор для светодиода? | Статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *